A combined space鈥搕ime block coding (STBC) and eigen-space tracking
(EST) scheme in Multiple-Input-multiple-output systems is
proposed. It is proved that the STBC-EST is capable of shifting
hardware complexity from the receiver to the transmitter without
any bit error rate (BER) performance loss. A computation efficient
EST algorithm is also proposed, which makes the STBC-EST affordable.
Simulation results show that the STBC-EST with a modest
feedback requirement results in a negligible BER performance loss
compared with a dual system configuration.
Many wireless communications channels consist of multiple signal paths from the
transmitter to receiver. This multiplicity of paths leads to a phenomenon known
as multipath fading. The multiple paths are caused by the presence of objects in the
physical environment that, through the mechanisms of propagation, alter the path of
radiated energy. These objects are referred to as scatterers. In the past, researchers
often looked at ways to mitigate multipath scattering, such as in diversity systems.
Multiple-Input, multiple-output (MIMO) systems, on the other hand, use multipath
diversity to their advantage; a MIMO system has the ability to translate increased
spatial diversity into increased channel capacity.
Linear Technology’s high performance battery management ICsenable long battery life and run time, while providing precision charging control, constantstatus monitoring and stringent battery protection. Our proprietary design techniques seamlesslymanage multiple input sources while providing small solution footprints, faster charging and100% standalone operation. Battery and circuit protection features enable improved thermalperformance and high reliability operation.
3rd Generation Partnership Project
Technical Specification Group Radio Access Network
Spatial channel model for
Multiple Input Multiple Output [MIMO] simulations
This book gives a comprehensive overview of the technologies for the advances of
mobile radio access networks. The topics covered include linear transmitters,
superconducting filters and cryogenic radio frequency (RF) front head, radio over
fiber, software radio base stations, mobile terminal positioning, high speed
downlink packet access (HSDPA), multiple antenna systems such as smart
antennas and multiple input and multiple output (MIMO) systems, orthogonal
frequency division multiplexing (OFDM) systems, IP-based radio access networks
(RAN), autonomic networks, and ubiquitous networks.
Multiple-Input Multiple-Output (MIMO) systems have recently been the
subject of intensive consideration in modem wireless communications as they
offer the potential of providing high capacity, thus unleashing a wide range of
applications in the wireless domain. The main feature of MIMO systems is the
use of space-time processing and Space-Time Codes (STCs). Among a variety
of STCs, orthogonal Space-Time Block Codes (STBCs) have a much simpler
decoding method, compared to other STCs
Multiuser Multiple-Input-multiple-output (MU-
MIMO) systems are known to be hindered by dimensionality
loss due to channel state information (CSI) acquisition overhead.
In this paper, we investigate user-scheduling in MU-MIMO
systems on account of CSI acquisition overhead, where a base
station dynamically acquires user channels to avoid choking the
system with CSI overhead.
To meet the future demand for huge traffic volume of wireless data service, the research on the fifth generation
(5G) mobile communication systems has been undertaken in recent years. It is expected that the spectral and energy
efficiencies in 5G mobile communication systems should be ten-fold higher than the ones in the fourth generation
(4G) mobile communication systems. Therefore, it is important to further exploit the potential of spatial multiplexing
of multiple antennas. In the last twenty years, Multiple-Input multiple-output (MIMO) antenna techniques have been
considered as the key techniques to increase the capacity of wireless communication systems. When a large-scale
antenna array (which is also called massive MIMO) is equipped in a base-station, or a large number of distributed
antennas (which is also called large-scale distributed MIMO) are deployed, the spectral and energy efficiencies can
be further improved by using spatial domain multiple access. This paper provides an overview of massive MIMO
and large-scale distributed MIMO systems, including spectral efficiency analysis, channel state information (CSI)
acquisition, wireless transmission technology, and resource allocation.