-
High-Speed, Low-Power
Dual Operational Amplifier
The AD826 features high output current drive capability of
50 mA min per amp, and is able to drive unlimited capacitive
loads. With a low power supply current of 15 mA max for both
amplifiers, the AD826 is a true general purpose operational
amplifier.
The AD826 is ideal for power sensitive applications such as video
cameras and portable instrumentation. The AD826 can operate
from a single +5 V supply, while still achieving 25 MHz of band
width. Furthermore the AD826 is fully specified from a single
+5 V to ±15 V power supplies.
The AD826 excels as an ADC/DAC buffer or active filter in
data acquisition systems and achieves a settling time of 70 ns
to 0.01%, with a low input offset voltage of 2 mV max. The
AD826 is available in small 8-lead plastic mini-DIP and SO
packages.
標(biāo)簽:
826
AD
上傳時(shí)間:
2020-04-19
上傳用戶:su1254
-
Smart Grids provide many benefits for society. Reliability, observability across the
energy distribution system and the exchange of information between devices are just
some of the features that make Smart Grids so attractive. One of the main products of
a Smart Grid is to data. The amount of data available nowadays increases fast and carries
several kinds of information. Smart metres allow engineers to perform multiple
measurements and analyse such data. For example, information about consumption,
power quality and digital protection, among others, can be extracted. However, the main
challenge in extracting information from data arises from the data quality. In fact, many
sectors of the society can benefit from such data. Hence, this information needs to be
properly stored and readily available. In this chapter, we will address the main concepts
involving Technology Information, Data Mining, Big Data and clustering for deploying
information on Smart Grids.
標(biāo)簽:
Processing
Cities
Smart
Data
in
上傳時(shí)間:
2020-05-23
上傳用戶:shancjb
-
Smart Grids provide many benefits for society. Reliability, observability across the
energy distribution system and the exchange of information between devices are just
some of the features that make Smart Grids so attractive. One of the main products of
a Smart Grid is to data. The amount of data available nowadays increases fast and carries
several kinds of information. Smart metres allow engineers to perform multiple
measurements and analyse such data. For example, information about consumption,
power quality and digital protection, among others, can be extracted. However, the main
challenge in extracting information from data arises from the data quality. In fact, many
sectors of the society can benefit from such data. Hence, this information needs to be
properly stored and readily available. In this chapter, we will address the main concepts
involving Technology Information, Data Mining, Big Data and clustering for deploying
information on Smart Grids.
標(biāo)簽:
Processing
Cities
Smart
Data
上傳時(shí)間:
2020-05-25
上傳用戶:shancjb
-
The concept of smart cities emerged few years ago as a new vision for urban
development that aims to integrate multiple information and communication
technology (ICT) solutions in a secure fashion to manage a city’s assets. Modern ICT
infrastructure and e-services should fuel sustainable growth and quality of life,
enabled by a wise and participative management of natural resources to be ensured
by citizens and government. The need to build smart cities became a requirement that
relies on urban development that should take charge of the new infrastructures for
smart cities (broadband infrastructures, wireless sensor networks, Internet-based
networked applications, open data and open platforms) and provide various smart
services and enablers in various domains including healthcare, energy, education,
environmental management, transportation, mobility and public safety.
標(biāo)簽:
Enablers
Cities
Smart
for
上傳時(shí)間:
2020-05-25
上傳用戶:shancjb
-
The rapid growth in mobile communications has led to an increasing demand for wide-
band high data rate communications services. In recent years, Distributed Antenna
Systems (DAS) has emerged as a promising candidate for future (beyond 3G or 4G)
mobile communications, as illustrated by projects such as FRAMES and FuTURE. The
architecture of DAS inherits and develops the concepts of pico- or micro-cell systems,
where multiple distributed antennas or access points (AP) are connected to and con-
trolled by a central unit.
標(biāo)簽:
Distributed
Antenna
Systems
上傳時(shí)間:
2020-05-27
上傳用戶:shancjb
-
The writing of this book was prompted by two main developments in wireless
communications in the past decade. First is the huge surge of research activities in
physical-layer wireless communication theory. While this has been a subject of study
since the 60’s, recent developments in the field, such as opportunistic and multi-input
multi-output (MIMO) communication techniques, have brought completely new per-
spectives on how to communicate over wireless channels.
標(biāo)簽:
Communication
Fundamentals
Wireless
of
上傳時(shí)間:
2020-05-27
上傳用戶:shancjb
-
With the rapid growth in the number of wireless applications, services and devices,
using a single wireless technology such as a second generation (2G) and third gener-
ation (3G) wireless system would not be efficient to deliver high speed data rate and
quality-of-service (QoS) support to mobile users in a seamless way. The next genera-
tion wireless systems (also sometimes referred to as Fourth generation (4G) systems)
are being devised with the vision of heterogeneity in which a mobile user/device will
be able to connect to multiple wireless networks (e.g., WLAN, cellular, WMAN)
simultaneously.
標(biāo)簽:
Heterogeneous
Wireless
Networks
Access
上傳時(shí)間:
2020-05-27
上傳用戶:shancjb
-
The first Third Generation Partnership Project (3GPP) Wideband Code Division
Multiple Access (WCDMA) networks were launched during 2002. By the end of 2005
there were 100 open WCDMA networks and a total of over 150 operators having
frequency licenses for WCDMA operation. Currently, the WCDMA networks are
deployedinUniversalMobileTelecommunicationsSystem(UMTS)bandaround2GHz
in Europe and Asia including Japan and Korea. WCDMA in America is deployed in the
existing 850 and 1900 spectrum allocations while the new 3G band at 1700/2100 is
expected to be available in the near future. 3GPP has defined the WCDMA operation
also for several additional bands, which are expected to be taken into use during the
coming years.
標(biāo)簽:
HSDPAHSUPA
Access
Speed
Radio
UMTS
High
for
上傳時(shí)間:
2020-05-27
上傳用戶:shancjb
-
In this book, we study the interference cancellation and detection problem in
multiantenna multi-user scenario using precoders. The goal is to utilize multiple
antennas to cancel the interference without sacrificing the diversity or the com-
plexity of the system.
標(biāo)簽:
Cancellation6
Interference
上傳時(shí)間:
2020-05-27
上傳用戶:shancjb
-
Microwave radio network design is a subset of activities that constitute
the overall transmission network design. Transmission networks are
sometimes called transport networks, access networks, or connectivity
networks. For many wireless carriers, microwave is becoming a popu-
lar preference over wireline (leased lines) transport for many reasons,
especially as microwave radio equipment costs decrease and installation
becomes simpler. Low monthly operating costs can undercut those of
typical single (and especially multiple) T1/E1 expenses, proving it to be
more economical over the long term—usually two to four years. Network
operators also like the fact that they can own and control microwave
radio networks instead of relying on other service providers for network
components.
標(biāo)簽:
Transmission
Microwave
Networks
上傳時(shí)間:
2020-05-28
上傳用戶:shancjb