The Internet of Things is considered to be the next big opportunity, and challenge, for the Internet engineering community, users of technology, companies and society as a whole. It involves connecting embedded devices such as sensors, home appliances, weather stations and even toys to Internet Protocol (IP) based networks. The number of IP-enabled embedded devices is increasing rapidly, and although hard to estimate, will surely outnumber the number of personal computers (PCs) and servers in the future. With the advances made over the past decade in microcontroller,low-power radio, battery and microelectronic technology, the trend in the industry is for smart embedded devices (called smart objects) to become IP-enabled, and an integral part of the latest services on the Internet. These services are no longer cyber, just including data created by humans, but are to become very connected to the physical world around us by including sensor data, the monitoring and control of machines, and other kinds of physical context. We call this latest frontier of the Internet, consisting of wireless low-power embedded devices, the Wireless Embedded Internet. Applications that this new frontier of the Internet enable are critical to the sustainability, efficiency and safety of society and include home and building automation, healthcare, energy efficiency, smart grids and environmental monitoring to name just a few.
標簽: Embedded Internet Wireless 6LoWPAN The
上傳時間: 2020-05-26
上傳用戶:shancjb
The field of digital communication has evolved rapidly in the past few decades, with commercial applications proliferating in wireline communi- cation networks (e.g., digital subscriber loop, cable, fiber optics), wireless communication (e.g., cell phones and wireless local area networks), and stor- age media (e.g., compact discs, hard drives). The typical undergraduate and graduate student is drawn to the field because of these applications, but is often intimidated by the mathematical background necessary to understand communication theory.
標簽: Communication Fundamentals Digital of
上傳時間: 2020-05-27
上傳用戶:shancjb
FPGA HArd Ethercat Master
上傳時間: 2020-05-30
上傳用戶:q8360428
The ever-increasing demand for private and sensitive data transmission over wireless net- works has made security a crucial concern in the current and future large-scale, dynamic, and heterogeneous wireless communication systems. To address this challenge, computer scientists and engineers have tried hard to continuously come up with improved crypto- graphic algorithms. But typically we do not need to wait too long to find an efficient way to crack these algorithms. With the rapid progress of computational devices, the current cryptographic methods are already becoming more unreliable. In recent years, wireless re- searchers have sought a new security paradigm termed physical layer security. Unlike the traditional cryptographic approach which ignores the effect of the wireless medium, physi- cal layer security exploits the important characteristics of wireless channel, such as fading, interference, and noise, for improving the communication security against eavesdropping attacks. This new security paradigm is expected to complement and significantly increase the overall communication security of future wireless networks.
標簽: Communications Physical Security Wireless Layer in
上傳時間: 2020-05-31
上傳用戶:shancjb
This book was born from the perception that there is much more to spectrum use and sharing than one sees reflected in publications, whether academic, commercial or political. the former – in good research style – tend towards reductionism and concentrate on specific, detailed aspects. commercial publications tend to empha- size the positive aspects and they tend to put promise above practice. Given the ever increasing pace of technology development and recent successes of new wireless technologies, some pundits predict large-scale spectrum scarcity, potentially lead- ing to economic catastrophe. Although economic theory has a hard time explaining recent events that shook the world economy, the notion of spectrum scarcity is intui- tively acceptable, even if not correct or immediately relevant.
上傳時間: 2020-06-01
上傳用戶:shancjb
The serious study of the practice of how to determine the appropriate content of a specification is a seldom-appreciated pastime. Those who have the responsibility to design a product would prefer a greater degree of freedom than permitted by the con- tent of a specification. Many of those who would manage those who would design a product would prefer to allocate all of the project funding and schedule to what they consider more productive labor. These are the attitudes, of course, that doom a project to defeat but they are hard to counter no matter how many times repeated by design engineers and managers. A system engineer who has survived a few of these experiences over a long career may retire and forget the past but we have an endur- ing obligation to work toward changing these attitudes while trying to offer younger system engineers a pathway toward a more sure success in requirements analysis and specification publishing.
標簽: Requirements Analysis System
上傳時間: 2020-06-01
上傳用戶:shancjb
Machine learning is a broad and fascinating field. Even today, machine learning technology runs a substantial part of your life, often without you knowing it. Any plausible approach to artifi- cial intelligence must involve learning, at some level, if for no other reason than it’s hard to call a system intelligent if it cannot learn. Machine learning is also fascinating in its own right for the philo- sophical questions it raises about what it means to learn and succeed at tasks.
標簽: Learning Machine Course in
上傳時間: 2020-06-10
上傳用戶:shancjb
全志A20核心板配套開發底板Cadence原理圖+ Pads2005格式PCB文件+轉換后的AD格式原理圖PCB文件:A20_DVK1_BASE_V16_Altium_Designer15.PcbDocA20_DVK1_BASE_V16_BOM_20151015.xlsxA20_DVK1_BASE_V16_Gerber制板文件.rarA20_DVK1_BASE_V16_PADS2005_PCB30.pcbA20_DVK1_BASE_V16_PADS2005_PCB_ASCII.PcbDocA20_DVK1_BASE_V16_PADS9.5.pcba20_dvk1_base_v16_SCH_20151015.pdfA20_DVK1_BASE_V16_元件位置查找圖_20151102.pdfA20_DVK1_BASE_V16_原理圖_OrCAD16.5.DSNA20_DVK1_BASE_V16_導出到AD格式的原理圖和PCBA20_DVK1_BASE_V16_導出到AD格式的原理圖和PCB.rarA20_DVK1_BASE_V16_頂層元件編號絲印圖_20151102.pdfA20_DVK1_BASE_V16_頂層元件規格絲印圖_20151102.pdf主要器件如下:Library Component Count : 58Name Description----------------------------------------------------------------------------------------------------ANTBATTERY_1BEAD CAPCAP NP 貼片電容,Y5V,6.3V,2.2uF,+80%-20%,0603CAP NP_2_Dup1 X5RCAP NP_Dup2 0402 1uF X5R 6.3V +/-10%CAP NP_Dup3 0402 1uF X5R 6.3V +/-10%CAPACITOR CAPACITOR POLCON1 CON12 CON3 CON4 CON50 CON6CON6A CONNECTOR45X4 C_Generic DB15-VGA_0 DIODE DIODE DUAL SERIESFM25CL64 FR9886SPGTR FUSEHOLDER_0 HDMI19_PLUG HEADER 2 INDUCTOR/SMINDUCTOR_4 C4K-2.5HINDUCTOR_Dup2 INDUCTOR_Dup3 IRM-2638LED_0M93C46_0 MINI USB-B_6 MODULE_CAM_PA0505 PH163539 PLAUSB-AF5P-WSMT_0 PUSHBUTTON_TSKB-2L_0PowerJACK R1 0805 R1_0805 RES2X4RESISTOR RESISTOR_Dup1 RESISTOR_Dup2 RESISTOR_V RJ45_8PGR_Generic S9013SMD_Dup2 SD_MMC_CARD2_0 TP_5 TestPoint_3TitleBlock_Gongjun USBPORT2 USB_WIFI_0 XC6204VZ_3 LDO 3.3V 300mA( SOT-25 )rRClamp0524P
上傳時間: 2021-11-08
上傳用戶:
移動機器人路徑規劃尤其是未知環境下機器人路徑規劃是機器人技術中的一個重要研究領域,得到了很多研究者的關注,并取得了一系列重要成果。目前已存在許多用來解決該問題的優化算法,但是此類問題屬于N-Hard問題,尋求更佳的算法就成為該領域的一個研究熱點。為此,根據機器人路徑規劃算法的研究現狀和向智能化,仿生化發展的趨勢,研究了一種基于圖的機器人路徑規劃螞蟻優化算法。算法首先用柵格法對機器人的工作空間進行建模,并用一個狀態矩陣表示其狀態,由此構造出一個連通圖,由一組螞蟻在圖上模擬螞蟻的覓食行為,從而得到避碰的優化路徑。最后,借鑒分枝隨機過程和生滅過程的理論知識,用概率的方法從理論上對該算法的收斂性進行了分析,在此基礎上,結合計算機仿真結果,證實了本文提出的算法的有效性和收斂性。迄今為止,對于未知環境下機器人路徑規劃,人們已經探索出了許多有效的求解方法諸如虛擬力場法、基于學習或Q學習的規劃方法、滾動窗口規劃方法、非啟發式方法及各類定位、導航方法等等。近年來,不少學者用改進的遺傳算法、神經網絡、隨機樹、蟻群算法等方法對未知環境下機器人路徑進行了規劃機器人路徑規劃算法向智能化、仿生化發展是一個明顯的趨勢.由于已有算法不同程度的存在一定局限性,諸如搜索空間大、算法復雜、效率不高等,尤其對于未知環境,不少路徑規劃算法的復雜度較高,甚至無法求解,根據日前的研究現狀和不足,本文提出了一種用于解決未知環境下機器人路徑規劃的基于圖的螞蟻算法,理論分析和實驗結果都證明了本文算法的有效性和收斂性本課題研究的主要內容本文在用概格法對機器人的工作空間進行建模的基礎上,用一個狀態矩陣表示其狀態,由此構造一個連通圖,由一組螞蚊在圖上模擬螞蟻的覓食行為,從而得到避碰的優化路徑并借鑒分枝隨機過程和生滅過程的理論知識用概率的方法從理論上對該算法的收斂性進行了分析,結合計算機仿真,證明了本文算法的有效性和收斂性
上傳時間: 2022-03-10
上傳用戶:kingwide
反激式開關電源變壓器設計的詳細步驟85W反激變壓器設計的詳細步驟 1. 確定電源規格. 1).輸入電壓范圍Vin=90—265Vac; 2).輸出電壓/負載電流:Vout1=42V/2A, Pout=84W 3).轉換的效率=0.80 Pin=84/0.8=105W 2. 工作頻率,匝比, 最低輸入電壓和最大占空比確定. Vmos*0.8>Vinmax+n(Vo+Vf)600*0.8>373+n(42+1)得n<2.5Vd*0.8>Vinmax/n+Vo400*0.8>373/n+42得n>1.34 所以n取1.6最低輸入電壓Vinmin=√[(Vacmin√2)* (Vacmin√2)-2Pin(T/2-tc)/Cin=(90√2*90√2-2*105*(20/2-3)/0.00015=80V取:工作頻率fosc=60KHz, 最大占空比Dmax=n(Vo+Vf)/[n(Vo+Vf)+Vinmin]= 1.6(42+1)/[1.6(42+1)+80]=0.45 Ton(max)=1/f*Dmax=0.45/60000=7.5us 3. 變壓器初級峰值電流的計算. Iin-avg=1/3Pin/Vinmin=1/3*105/80=0.4AΔIp1=2Iin-avg/D=2*0.4/0.45=1.78AIpk1=Pout/?/Vinmin*D+ΔIp1=84/0.8/80/0.45=2.79A 4. 變壓器初級電感量的計算. 由式子Vdc=Lp*dip/dt,得: Lp= Vinmin*Ton(max)/ΔIp1 =80*0.0000075/1.78 =337uH 取Lp=337 uH 5.變壓器鐵芯的選擇. 根據式子Aw*Ae=Pt*1000000/[2*ko*kc*fosc*Bm*j*?],其中: Pt(標稱輸出功率)= Pout=84W Ko(窗口的銅填充系數)=0.4 Kc(磁芯填充系數)=1(對于鐵氧體), 變壓器磁通密度Bm=1500Gs j(電流密度): j=4A/mm2;Aw*Ae=84*1000000/[2*0.4*1*60*103*1500Gs*4*0.80]=0.7cm4 考慮到繞線空間,選擇窗口面積大的磁芯,查表: ER40/45鐵氧體磁芯的有效截面積Ae=1.51cm2 ER40/45的功率容量乘積為 Ap = 3.7cm4 >0.7cm4 故選擇ER40/45鐵氧體磁芯. 6.變壓器初級匝數 1).由Np=Vinmin*Ton/[Ae*Bm],得: Np=80*7.5*10n-6/[1.52*10n-4*0.15] =26.31 取 Np =27T 7. 變壓器次級匝數的計算. Ns1(42v)=Np/n=27/1.6=16.875 取Ns1 = 17T Ns2(15v)=(15+1)* Ns1/(42+1)=6.3T 取Ns2 = 7T
上傳時間: 2022-04-15
上傳用戶: