The above title is not happenstance and was arrived at afterconsiderable deliberation. As a linear IC manufacturer, it isour goal to encourage users to design and build switchingregulators. A problem is that while everyone agrees thatworking switching regulators are a good thing, everyonealso agrees that they are difficult to get working. Switchingregulators, with their high efficiency and small size, areincreasingly desirable as overall package sizes shrink.Unfortunately, switching regulators are also one of themost difficult linear circuits to design. Mysterious modes,sudden, seemingly inexplicable failures, peculiar regulationcharacteristics and just plain explosions are commonoccurrences. Diodes conduct the wrong way. Things gethot that shouldn’t. Capacitors act like resistors, fusesdon’t blow and transistors do. The output is at ground, andthe ground terminal shows volts of noise.
Providing power for the Pentium® microprocessor family isnot a trivial task by any means. In an effort to simplify thistask we have developed a new switching regulator controlcircuit and a new linear regulator to address the needs ofthese processors. Considerable time has been spent developingan optimized decoupling network. Here are severalcircuits using the new LTC®1266 synchronous buck regulatorcontrol chip and the LT®1584 linear regulator toprovide power for Pentium processors and Pentium VREprocessors. The Pentium processor has a supply requirementof 3.3V ±5%. The Pentium VRE processor requires3.500V ±100mV.
Linear Technology has a sabbatical program. Every fiveyears employees are granted sabbatical leave, which maylast up to six weeks. You have 18 months from each fiveyear employment anniversary to take the leave. Sabbaticalis fully company paid and has no restrictions. The time isyours to do with as you please.
Sensing and/or controlling current flow is a fundamental requirement in many electronics systems, and the tech-niques to do so are as diverse as the applications them-selves. This Application Note compiles solutions to cur-rent sensing problems and organizes the solutions by general application type. These circuits have been culled from a variety of Linear Technology documents
利用單片機(jī)具有的智能程序控制的特點(diǎn),設(shè)計(jì)了基于STC89C52單片機(jī)的"二極管特性測(cè)試器",可對(duì)二極管一般特性進(jìn)行快速測(cè)試。通過(guò)穩(wěn)定線性電流源給二極管加載恒定電流,然后由高精度模數(shù)轉(zhuǎn)換器測(cè)試其壓降,以此為基礎(chǔ)可判斷二極管好壞、檢測(cè)二極管極性和測(cè)試二極管伏安特性等,避免了用萬(wàn)用表測(cè)試只能測(cè)得極性而不知其特性這一缺點(diǎn)。可用于電子設(shè)計(jì)制作過(guò)程中對(duì)二極管進(jìn)行快速測(cè)試,以確定被測(cè)二極管是否滿足電路的設(shè)計(jì)要求。
Abstract:
By making good use of the intelligent control function of the Micro Controller Unit (MCU), the diode trait tester was designed based on the STC89C52,which could be used to test the trait of a diode rapidly. By loading constant current to diode through the stable linear current source, and measuring the voltage drop of the diode by high-precision analogue-to-digital converter (ADC), it can judge whether the diode is good or not, distinguish the polarity of the diode, and test the trait that the diode, which can avoid the fault of using a multimeter can only measure the polarity but not the trait. This device can be used to test the trait of a diode quickly,and to make sure that whether a diode can be used in the electronic design or not.
Linear 公司的LTC4310是絕緣的雙向I2C總線通信器件,每個(gè)器件可把I2C邏輯狀態(tài)編碼成信號(hào),通過(guò)絕緣層傳輸?shù)搅硪粋€(gè)器件.接收器件解碼,并驅(qū)動(dòng)I2C總線到適當(dāng)?shù)拇_邏輯狀態(tài).主要用在絕緣的I2C, SMBus和PMBus 接口,絕緣電源,以太網(wǎng)供電和正到負(fù)電源通信.本文介紹了LTC4310主要特性,典型應(yīng)用以及多種應(yīng)用電路框圖.
CAT5110/18/19/23/24/25 linear-taper digitally programmable potentiometers perform the same function as a mechanical potentiometer or a variable resistor. These devices consist of a fixed resistor and a wiper contact with 32-tap points that are digitally controlled through a2-wire up/down serial interface.