Methods for designing a maintenance simulation training system for certain kind of radio are introduced. Fault modeling method is used to establish the fault database. The system sets up some typical failures, follow the prompts trainers can locate the fault source and confirm the type to accomplish corresponding fault maintenance training. A training evaluation means is given to examining and evaluating the training performance. The system intuitively and vividly shows the fault maintenance PROCESS, it can not only be used in teaching, but also in daily maintenance training to efficiently improve the maintenance operation level. Graphical programming language LabVIEW is used to develop the system platform.
Abstract: A laser module designer can use a fixed resistor, mechanical pot, digital pot, or a digital-to-analogconverter (DAC) to control the laser driver's modulation and bias currents. The advantages of a programmablemethod (POT or DAC) are that the manufacturing PROCESS can be automated and digital control can be applied(e.g., to compensate for temperature). Using POTs can be a more simple approach than a DAC. There can be aslight cost advantage to using a POT, but this is usually not significant relative to other pieces of the design.Using a DAC can offer advantages, including improved linearity (translating to ease of software implementationand ability to hit the required accuracy), increased board density, a wider range of resolutions, a betteroptimization range, ease of use with a negative voltage laser driver, and unit-to-unit consistency
This unique guide to designing digital VLSI circuits takes a top-down approach, reflecting the natureof the design PROCESS in industry. Starting with architecture design, the book explains the why andhow of digital design, using the physics that designers need to know, and no more.Covering system and component aspects, design verification, VHDL modelling, clocking, signalintegrity, layout, electricaloverstress, field-programmable logic, economic issues, and more, thescope of the book is singularly comprehensive.
The MAX2691 low-noise amplifier (LNA) is designed forGPS L2 applications. Designed in Maxim’s advancedSiGe PROCESS, the device achieves high gain andlow noise figure while maximizing the input-referred 1dBcompression point and the 3rd-order intercept point. TheMAX2691 provides a high gain of 17.5dB and sub 1dBnoise figure.
•Founded in Jan. 08, 2001 in Shanghai, China.•Fabless IDH focused on Analog & Mixed Signal Chip design & marketing •Over 100 IC introduced.•Over 200 OEM Customer worldwide•ISO-9000 Certified•Distribution Channel in Taiwan, China & Japan
To achieve 100% customer satisfactionby producing the technically advanced product with the best quality, on-time delivery and service.
Leverages on proprietary PROCESS and world-class engineering team to develop innovative & high quality analog solutions that add value to electronics equipment.
Abstract: This application note details a step-by-step design PROCESS for the MAX16833 high-voltagehigh-brightness LED driver. This PROCESS can speed up prototyping and increase the chance for firstpass
The core voltages for FPGAs are moving lower as a resultof advances in the fabrication PROCESS. The newest FPGAfamily from Altera, the Stratix® II, now requires a corevoltage of 1.2V and the Stratix, Stratix GX, HardCopy®Stratix and CycloneTM families require a core voltage of1.5V. This article discusses how to power the core and I/Oof low voltage FPGAs using the latest step-down switchmode controllers from Linear Technology Corporation.
Analog Inputs and Outputs in an S7 PLC are represented in the PLC as a 16-bit integer. Over
the nominal span of the analog input or output, the value of this integer will range between -
27648 and +27648. However, it is easier to use the analog values if they are scaled to the
same units and ranges as the PROCESS being controlled. This applications tip describes
methods for scaling analog values to and from engineering units.
為了提高PCB板制作的效率,改變傳統的化學腐蝕制板工藝,使用機械仿形銑制作電路板的方法,設計了以ATMEGA16單片機為核心部件的PCB板雕刻機控制系統。其中包括PCB雕刻機的基本功能、主要硬件電路設計和軟件的實現流程,并給出了相關設計電路。重點分析了雕刻機步進電機的驅動電路以及主軸電機的驅動電路,該雕刻機經實際運行,系統工作良好,可有效提高PCB板的制作效率。
Abstract:
In order to improve the efficiency of production of PCB board and change the traditional chemical etching plates, using of mechanical copying milling method makes circuit boards,this paper introduces the PCB engraving machine control system used ATMEGA16 microcomputer as the core components. It includes basic function, the hardware circuit design and software realization PROCESS, and gives the corresponding circuit design.It analyses the drive circuit of engrawing machine stepper motor and spindle motor in detail. This engraving machine by practical operation, the system works well, which can effectively improve the production efficiency of PCB board.