The MAX3243E device consists of three line drivers, five line receivers, and a dual charge-pump circuit with±15-kV ESD (HBM and IEC61000-4-2, Air-Gap Discharge) and ±8-kV ESD (IEC61000-4-2, Contact Discharge)protection on serial-port connection Pins. The device meets the requirements of TIA/EIA-232-F and provides theelectrical interface between an asynchronous communication controller and the serial-port connector. Thiscombination of drivers and receivers matches that needed for the typical serial port used in an IBM PC/AT, orcompatible. The charge pump and four small external capacitors allow operation from a single 3-V to 5.5-Vsupply. In addition, the device includes an always-active noninverting output (ROUT2B), which allowsapplications using the ring indicator to transmit data while the device is powered down. The device operates atdata signaling rates up to 250 kbit/s and a maximum of 30-V/ms driver output slew rate.
The MC68HC05K0 is a low cost, low pin countsingle chip microcomputer with 504 bytes of userROM and 32 bytes of RAM. The MC68HC05K0 isa member of the 68HC05K series of devices whichare available in 16-pin DIL or SOIC packages.It uses the same CPU as the other devices in the68HC05 family and has the same instructions andregisters. Additionally, the device has a 15-stagemulti-function timer and 10 general purposebi-directional I/0 lines. A mask option is availablefor software programmable pull-downs on all ofthe I/O Pins and four of the Pins are capable ofgenerating interrupts.The device is ideally suited for remote-controlkeyboard applications because the pull-downs andthe interrupt drivers on the port Pins allowkeyboards to be built without any externalcomponents except the keys themselves. There isno need for external pull-up or pull-down resistors,or diodes for wired-OR interrupts, as these featuresare already designed into the device.
The 87C576 includes two separate methods of programming theEPROM array, the traditional modified Quick-Pulse method, and anew On-Board Programming technique (OBP).Quick Pulse programming is a method using a number of devicePins in parallel (see Figure 1) and is the traditional way in which87C51 family members have been programmed. The Quick-Pulsemethod supports the following programming functions:– program USER EPROM– verify USER EPROM– program KEY EPROM– program security bits– verify security bits– read signature bytesThe Quick-Pulse method is quite easily suited to standardprogramming equipment as evidenced by the numerous vendors of87C51 compatible programmers on the market today. Onedisadvantage is that this method is not well suited to programming inthe embedded application because of the large number of signallines that must be isolated from the application. In addition, parallelsignals from a programmer would need to be cabled to theapplication’s circuit board, or the application circuit board wouldneed to have logic built-in to perform the programming functions.These requirements have generally made in-circuit programmingusing the modified Quick Pulse method impractical in almost all87C51 family applications.
Abstract: Designers who must interface 1-Wire temperature sensors with Xilinx field-programmable gate arrays(FPGAs) can use this reference design to drive a DS28EA00 1-Wire slave device. The downloadable softwarementioned in this document can also be used as a starting point to connect other 1-Wire slave devices. The systemimplements a 1-Wire master connected to a UART and outputs temperature to a PC from the DS28EA00 temperaturesensor. In addition, high/low alarm outputs are displayed from the DS28EA00 PIO Pins using LEDs.
The C8051F020/1/2/3 devices are fully integrated mixed-signal System-on-a-Chip MCUs with 64 digital I/O Pins (C8051F020/2) or 32 digital I/O Pins (C8051F021/3). Highlighted features are listed below; refer to Table 1.1 for specific product feature selection.
The LPC2292/2294 microcontrollers are based on a 16/32-bit ARM7TDMI-S CPU with real-time emulation and embedded trace support, together with 256 kB of embedded high-speed flash memory. A 128-bit wide memory interface and a unique accelerator architecture enable 32-bit code execution at the maximum clock rate. For critical code size applications, the alternative 16-bit Thumb mode reduces code by more than 30 pct with minimal performance penalty.
With their 144-pin package, low power consumption, various 32-bit timers, 8-channel 10-bit ADC, 2/4 (LPC2294) advanced CAN channels, PWM channels and up to nine external interrupt Pins these microcontrollers are particularly suitable for automotive and industrial control applications as well as medical systems and fault-tolerant maintenance buses. The number of available fast GPIOs ranges from 76 (with external memory) through 112 (single-chip). With a wide range of additional serial communications interfaces, they are also suited for communication gateways and protocol converters as well as many other general-purpose applications.
Remark: Throughout the data sheet, the term LPC2292/2294 will apply to devices with and without the /00 or /01 suffix. The suffixes /00 and /01 will be used to differentiate from other devices only when necessary.
Abstract: Designers who must interface 1-Wire temperature sensors with Xilinx field-programmable gate arrays(FPGAs) can use this reference design to drive a DS28EA00 1-Wire slave device. The downloadable softwarementioned in this document can also be used as a starting point to connect other 1-Wire slave devices. The systemimplements a 1-Wire master connected to a UART and outputs temperature to a PC from the DS28EA00 temperaturesensor. In addition, high/low alarm outputs are displayed from the DS28EA00 PIO Pins using LEDs.
8點基二fft
Fast Fourier Transform (FFT).
Using 8 points, takes about 1.2 ms to execute one FFT.
Sets up General Purpose Timer 1 to generate events at 10 kHz.
Will produce 10 kHz output on T1PWM and T1PWM Pins.