The XML Toolbox converts MATLAB data types (such as double, char, struct, complex, sparse, logical) of any level of nesting to XML format and vice versa. For example, >> project.name = MyProject >> project.id = 1234 >> project.param.a = 3.1415 >> project.param.b = 42 becomes with str=xml_format(project, off ) "<project> <name>MyProject</name> <id>1234</id> <param> <a>3.1415</a> <b>42</b> </param> </project>" On the other hand, if an XML string XStr is given, this can be converted easily to a MATLAB data type or structure V with the command V=xml_parse(XStr).
標簽: converts Toolbox complex logical
上傳時間: 2016-02-12
上傳用戶:a673761058
ST7787 芯片的SPEC,比亞迪2.4inchLCM的SPEC。The ST7787 is a single-chip controller/driver for 262K-color, graphic type TFT-LCD. It consists of 720 source line and 320 gate line driving circuits. This chip is capable of connecting directly to an external microprocessor, and accepts Serial Peripheral Interface (SPI), 8-bits/9-bits/16-bits/18-bits parallel interface. Display data can be stored in the on-chip display data RAM of 240x320x18 bits. It can perform display data RAM read/write operation with no external operation clock to minimize power consumption. In addition, because of the integrated power supply circuits necessary to drive liquid crystal, it is possible to make a display system with the fewest components.
上傳時間: 2016-09-22
上傳用戶:woshini123456
FCP takes a file, generates a random 2048 bit key and encrypts the file with a RC4 stream cipher. The encrypted file is written to a new file along with the decryption stub and key. When the output file is executed it decrypts and executes the encrypted file. It s written in Delphi 6, enjoy the source code.
標簽: file generates encrypts cipher
上傳時間: 2013-12-08
上傳用戶:爺的氣質
Absolutely wonderful features you may never imagine before, Skytree v2.0 takes you into a new era of treeview. Now let s take a tour to know what s new in Skytree v2.0.
標簽: Absolutely wonderful you features
上傳時間: 2013-12-24
上傳用戶:yulg
漢諾塔?。?! Simulate the movement of the Towers of Hanoi puzzle Bonus is possible for using animation eg. if n = 2 A→B A→C B→C if n = 3 A→C A→B C→B A→C B→A B→C A→C
標簽: the animation Simulate movement
上傳時間: 2017-02-11
上傳用戶:waizhang
本代碼為編碼開關代碼,編碼開關也就是數字音響中的 360度旋轉的數字音量以及顯示器上用的(單鍵飛梭開 關)等類似鼠標滾輪的手動計數輸入設備。 我使用的編碼開關為5個引腳的,其中2個引腳為按下 轉輪開關(也就相當于鼠標中鍵)。另外3個引腳用來 檢測旋轉方向以及旋轉步數的檢測端。引腳分別為a,b,c b接地a,c分別接到P2.0和P2.1口并分別接兩個10K上拉 電阻,并且a,c需要分別對地接一個104的電容,否則 因為編碼開關的觸點抖動會引起輕微誤動作。本程序不 使用定時器,不占用中斷,不使用延時代碼,并對每個 細分步數進行判斷,避免一切誤動作,性能超級穩定。 我使用的編碼器是APLS的EC11B可以參照附件的時序圖 編碼器控制流水燈最能說明問題,下面是以一段流水 燈來演示。
上傳時間: 2017-07-03
上傳用戶:gaojiao1999
【問題描述】 在一個N*N的點陣中,如N=4,你現在站在(1,1),出口在(4,4)。你可以通過上、下、左、右四種移動方法,在迷宮內行走,但是同一個位置不可以訪問兩次,亦不可以越界。表格最上面的一行加黑數字A[1..4]分別表示迷宮第I列中需要訪問并僅可以訪問的格子數。右邊一行加下劃線數字B[1..4]則表示迷宮第I行需要訪問并僅可以訪問的格子數。如圖中帶括號紅色數字就是一條符合條件的路線。 給定N,A[1..N] B[1..N]。輸出一條符合條件的路線,若無解,輸出NO ANSWER。(使用U,D,L,R分別表示上、下、左、右。) 2 2 1 2 (4,4) 1 (2,3) (3,3) (4,3) 3 (1,2) (2,2) 2 (1,1) 1 【輸入格式】 第一行是數m (n < 6 )。第二行有n個數,表示a[1]..a[n]。第三行有n個數,表示b[1]..b[n]。 【輸出格式】 僅有一行。若有解則輸出一條可行路線,否則輸出“NO ANSWER”。
標簽: 點陣
上傳時間: 2014-06-21
上傳用戶:llandlu
實驗源代碼 //Warshall.cpp #include<stdio.h> void warshall(int k,int n) { int i , j, t; int temp[20][20]; for(int a=0;a<k;a++) { printf("請輸入矩陣第%d 行元素:",a); for(int b=0;b<n;b++) { scanf ("%d",&temp[a][b]); } } for(i=0;i<k;i++){ for( j=0;j<k;j++){ if(temp[ j][i]==1) { for(t=0;t<n;t++) { temp[ j][t]=temp[i][t]||temp[ j][t]; } } } } printf("可傳遞閉包關系矩陣是:\n"); for(i=0;i<k;i++) { for( j=0;j<n;j++) { printf("%d", temp[i][ j]); } printf("\n"); } } void main() { printf("利用 Warshall 算法求二元關系的可傳遞閉包\n"); void warshall(int,int); int k , n; printf("請輸入矩陣的行數 i: "); scanf("%d",&k); 四川大學實驗報告 printf("請輸入矩陣的列數 j: "); scanf("%d",&n); warshall(k,n); }
上傳時間: 2016-06-27
上傳用戶:梁雪文以
#include "iostream" using namespace std; class Matrix { private: double** A; //矩陣A double *b; //向量b public: int size; Matrix(int ); ~Matrix(); friend double* Dooli(Matrix& ); void Input(); void Disp(); }; Matrix::Matrix(int x) { size=x; //為向量b分配空間并初始化為0 b=new double [x]; for(int j=0;j<x;j++) b[j]=0; //為向量A分配空間并初始化為0 A=new double* [x]; for(int i=0;i<x;i++) A[i]=new double [x]; for(int m=0;m<x;m++) for(int n=0;n<x;n++) A[m][n]=0; } Matrix::~Matrix() { cout<<"正在析構中~~~~"<<endl; delete b; for(int i=0;i<size;i++) delete A[i]; delete A; } void Matrix::Disp() { for(int i=0;i<size;i++) { for(int j=0;j<size;j++) cout<<A[i][j]<<" "; cout<<endl; } } void Matrix::Input() { cout<<"請輸入A:"<<endl; for(int i=0;i<size;i++) for(int j=0;j<size;j++){ cout<<"第"<<i+1<<"行"<<"第"<<j+1<<"列:"<<endl; cin>>A[i][j]; } cout<<"請輸入b:"<<endl; for(int j=0;j<size;j++){ cout<<"第"<<j+1<<"個:"<<endl; cin>>b[j]; } } double* Dooli(Matrix& A) { double *Xn=new double [A.size]; Matrix L(A.size),U(A.size); //分別求得U,L的第一行與第一列 for(int i=0;i<A.size;i++) U.A[0][i]=A.A[0][i]; for(int j=1;j<A.size;j++) L.A[j][0]=A.A[j][0]/U.A[0][0]; //分別求得U,L的第r行,第r列 double temp1=0,temp2=0; for(int r=1;r<A.size;r++){ //U for(int i=r;i<A.size;i++){ for(int k=0;k<r-1;k++) temp1=temp1+L.A[r][k]*U.A[k][i]; U.A[r][i]=A.A[r][i]-temp1; } //L for(int i=r+1;i<A.size;i++){ for(int k=0;k<r-1;k++) temp2=temp2+L.A[i][k]*U.A[k][r]; L.A[i][r]=(A.A[i][r]-temp2)/U.A[r][r]; } } cout<<"計算U得:"<<endl; U.Disp(); cout<<"計算L的:"<<endl; L.Disp(); double *Y=new double [A.size]; Y[0]=A.b[0]; for(int i=1;i<A.size;i++ ){ double temp3=0; for(int k=0;k<i-1;k++) temp3=temp3+L.A[i][k]*Y[k]; Y[i]=A.b[i]-temp3; } Xn[A.size-1]=Y[A.size-1]/U.A[A.size-1][A.size-1]; for(int i=A.size-1;i>=0;i--){ double temp4=0; for(int k=i+1;k<A.size;k++) temp4=temp4+U.A[i][k]*Xn[k]; Xn[i]=(Y[i]-temp4)/U.A[i][i]; } return Xn; } int main() { Matrix B(4); B.Input(); double *X; X=Dooli(B); cout<<"~~~~解得:"<<endl; for(int i=0;i<B.size;i++) cout<<"X["<<i<<"]:"<<X[i]<<" "; cout<<endl<<"呵呵呵呵呵"; return 0; }
標簽: 道理特分解法
上傳時間: 2018-05-20
上傳用戶:Aa123456789
Abstract—In the future communication applications, users may obtain their messages that have different importance levels distributively from several available sources, such as distributed storage or even devices belonging to other users. This scenario is the best modeled by the multilevel diversity coding systems (MDCS). To achieve perfect (information-theoretic) secrecy against wiretap channels, this paper investigates the fundamental limits on the secure rate region of the asymmetric MDCS (AMDCS), which include the symmetric case as a special case. Threshold perfect secrecy is added to the AMDCS model. The eavesdropper may have access to any one but not more than one subset of the channels but know nothing about the sources, as long as the size of the subset is not above the security level. The question of whether superposition (source separation) coding is optimal for such an AMDCS with threshold perfect secrecy is answered. A class of secure AMDCS (S-AMDCS) with an arbitrary number of encoders is solved, and it is shown that linear codes are optimal for this class of instances. However, in contrast with the secure symmetric MDCS, superposition is shown to be not optimal for S-AMDCS in general. In addition, necessary conditions on the existence of a secrecy key are determined as a design guideline.
標簽: Fundamental Limits Secure Class on of
上傳時間: 2020-01-04
上傳用戶:kddlas