近年來(lái),瓦斯事故在煤礦生產(chǎn)事故中所占比例越來(lái)越高,給礦工的生產(chǎn)生活帶來(lái)了極大的災(zāi)難,必須加強(qiáng)對(duì)瓦斯的監(jiān)測(cè)監(jiān)控,避免瓦斯爆炸事故。因此對(duì)瓦斯氣體進(jìn)行快速、實(shí)時(shí)檢測(cè)對(duì)于煤礦安全生產(chǎn)及環(huán)境保護(hù)有特別重要的意義。便攜式甲烷檢測(cè)報(bào)警儀是各國(guó)應(yīng)用最早最普遍的一種甲烷濃度檢測(cè)儀表,可隨時(shí)檢測(cè)作業(yè)場(chǎng)所的甲烷濃度,也可使用甲烷傳感器對(duì)甲烷濃度進(jìn)行連續(xù)實(shí)時(shí)地監(jiān)測(cè)。大體上當(dāng)前應(yīng)用的便攜式甲烷檢測(cè)儀器,按檢測(cè)原理分為光學(xué)甲烷檢測(cè)儀、熱導(dǎo)型甲烷檢測(cè)儀、熱催化型甲烷檢測(cè)報(bào)警儀、氣敏半導(dǎo)體式甲烷檢測(cè)儀等幾種。 光干涉甲烷檢測(cè)儀性能穩(wěn)定、使用壽命長(zhǎng),測(cè)量準(zhǔn)確,是我國(guó)煤礦主要的便攜式甲烷檢測(cè)儀器。但現(xiàn)有的光干涉甲烷檢測(cè)儀存在自動(dòng)化程度低、測(cè)量方法繁瑣、讀數(shù)不直觀,人為誤差較大、不能存儲(chǔ)數(shù)據(jù)等缺點(diǎn)。為此本文在干涉型甲烷檢測(cè)儀實(shí)現(xiàn)的原理上提出利用線陣型電荷耦合器件(CCD)對(duì)干涉條紋進(jìn)行非接觸式的自動(dòng)測(cè)量,獲得條紋信息,通過(guò)CCD驅(qū)動(dòng)、高速模數(shù)轉(zhuǎn)換、數(shù)據(jù)采集等關(guān)鍵技術(shù),實(shí)現(xiàn)了干涉條紋位移的精確測(cè)量,由單片機(jī)對(duì)量化后的測(cè)量信號(hào)進(jìn)行智能處理,數(shù)字化顯示甲烷含量的測(cè)量結(jié)果。 光干涉甲烷檢測(cè)的關(guān)鍵是對(duì)干涉條紋中白基線以及黑色條紋位置的檢測(cè),本設(shè)計(jì)采用線陣CCD成像獲取條紋信息判別其位置。CCD是一種性能獨(dú)特的半導(dǎo)體光電器件,近年來(lái)在攝像、工業(yè)檢測(cè)等科技領(lǐng)域里得到了廣泛的應(yīng)用。將CCD技術(shù)應(yīng)用于位置測(cè)量可以實(shí)現(xiàn)高精度和非接觸測(cè)量的要求;運(yùn)用FPGA實(shí)現(xiàn)CCD芯片的驅(qū)動(dòng)具有速度快、穩(wěn)定高等優(yōu)點(diǎn):模數(shù)轉(zhuǎn)換之后的數(shù)據(jù)沒(méi)有采用專(zhuān)用存儲(chǔ)芯片進(jìn)行存儲(chǔ),而采用FPGA硬件開(kāi)發(fā)平臺(tái)和Verilog HDL硬件描述語(yǔ)言編寫(xiě)代碼實(shí)現(xiàn)數(shù)據(jù)采集模塊系統(tǒng),同時(shí)提高數(shù)據(jù)采集精準(zhǔn)度,既降低成本又提高了存儲(chǔ)效率。 本文設(shè)計(jì)的新系統(tǒng)使用方便、精度高、數(shù)據(jù)可儲(chǔ)存,克服了傳統(tǒng)光干涉甲烷檢測(cè)儀的缺點(diǎn),技術(shù)指標(biāo)和功能都得到較大改善。
上傳時(shí)間: 2013-06-08
上傳用戶(hù):jogger_ding
隨著電子技術(shù)和計(jì)算機(jī)技術(shù)的飛速發(fā)展,視頻圖像處理技術(shù)近年來(lái)得到極大的重視和長(zhǎng)足的發(fā)展,其應(yīng)用范圍主要包括數(shù)字廣播、消費(fèi)類(lèi)電子、視頻監(jiān)控、醫(yī)學(xué)成像及文檔影像處理等領(lǐng)域。當(dāng)前視頻圖像處理主要問(wèn)題是當(dāng)處理的數(shù)據(jù)量很大時(shí),處理速度慢,執(zhí)行效率低。而且視頻算法的軟件和硬件仿真和驗(yàn)證的靈活性低。 本論文首先根據(jù)視頻信號(hào)的處理過(guò)程和典型視頻圖像處理系統(tǒng)的構(gòu)成提出了基于FPGA的視頻圖像處理系統(tǒng)總體框圖;其次選擇視頻轉(zhuǎn)換芯片SAA7113,完成視頻圖像采集模塊的設(shè)計(jì),主要分三步完成:1)配置視頻轉(zhuǎn)換芯片的工作模式,完成視頻轉(zhuǎn)化芯片SAA7113的初始化:2)通過(guò)分析輸出數(shù)據(jù)流的格式標(biāo)準(zhǔn),來(lái)識(shí)別奇偶場(chǎng)信號(hào)、場(chǎng)消隱信號(hào)和有效行數(shù)據(jù)的開(kāi)始和結(jié)束信號(hào)三種控制信號(hào),并根據(jù)控制信號(hào),用Verilog硬件描述語(yǔ)言編程實(shí)現(xiàn)圖像數(shù)據(jù)的采集;3)分析SRAM的讀寫(xiě)控制時(shí)序,采用兩塊SRAM完成圖像數(shù)據(jù)的存儲(chǔ)。然后編寫(xiě)軟件測(cè)試文件,在ISE Simulator仿真環(huán)境進(jìn)行程序測(cè)試與運(yùn)行,并分析仿真結(jié)果,驗(yàn)證了數(shù)據(jù)采集和存儲(chǔ)的正確性;最后,對(duì)常用視頻圖像算法的MATLAB仿真,選擇適當(dāng)?shù)乃阕樱捎霉ぞ進(jìn)ATLAB、System Generator for DSP和ISE,利用模塊構(gòu)建方式,搭建視頻算法平臺(tái),實(shí)現(xiàn)圖像平滑濾波、銳化濾波算法,在Simulink中仿真并自動(dòng)生成硬件描述語(yǔ)言和網(wǎng)表,對(duì)資源的消耗做簡(jiǎn)要分析。 本論文的創(chuàng)新點(diǎn)是采用新的開(kāi)發(fā)環(huán)境System Generator for DSP實(shí)現(xiàn)視頻圖像算法。這種開(kāi)發(fā)視頻圖像算法的方式靈活性強(qiáng)、設(shè)計(jì)周期短、驗(yàn)證方便、是視頻圖像處理發(fā)展的必然趨勢(shì)。
標(biāo)簽: FPGA 視頻圖像 處理系統(tǒng)
上傳時(shí)間: 2013-05-20
上傳用戶(hù):fudong911
紅外成像制導(dǎo)武器系統(tǒng)在打擊目標(biāo)的過(guò)程中,起始階段由于距離目標(biāo)比較遠(yuǎn),其成的像是只有幾個(gè)象素大小的小目標(biāo),對(duì)于在機(jī)車(chē)內(nèi)進(jìn)行鎖定目標(biāo)的操作手來(lái)說(shuō),看不見(jiàn)目標(biāo)的外形輪廓。為了提醒操作手注意圖
標(biāo)簽: 復(fù)雜背景 條件下 運(yùn)動(dòng)小目標(biāo) 檢測(cè)方法
上傳時(shí)間: 2013-04-24
上傳用戶(hù):爺?shù)臍赓|(zhì)
近年來(lái)微光、紅外、X光圖像傳感器在軍事、科研、工農(nóng)業(yè)生產(chǎn)、醫(yī)療衛(wèi)生等領(lǐng)域的應(yīng)用越來(lái)越為廣泛,但由于這些成像器件自身的物理缺陷,視覺(jué)效果很不理想,往往需要對(duì)圖像進(jìn)行適當(dāng)?shù)奶幚恚缘玫竭m合人眼觀察或機(jī)器識(shí)別的圖像。因此,市場(chǎng)急需大量高效的實(shí)時(shí)圖像處理器能夠在傳感器后端對(duì)這類(lèi)圖像進(jìn)行處理。而FPGA的出現(xiàn),恰恰解決了這個(gè)問(wèn)題。 近十年來(lái),隨著FPGA(現(xiàn)場(chǎng)可編程門(mén)陣列)技術(shù)的突飛猛進(jìn),F(xiàn)PGA也逐漸進(jìn)入數(shù)字信號(hào)處理領(lǐng)域,尤其在實(shí)時(shí)圖像處理方面。Xilinx的研究表明,在2000年主要用于DSP應(yīng)用的FPGA的發(fā)貨量,增長(zhǎng)了50%;而常規(guī)的DSP大約增長(zhǎng)了40%。由于FPGA可無(wú)比擬的并行處理能力,使得FPGA在圖像處理領(lǐng)域的應(yīng)用持續(xù)上升,國(guó)內(nèi)外,越來(lái)越多的實(shí)時(shí)圖像處理應(yīng)用都轉(zhuǎn)向了FPGA平臺(tái)。與PDSP相比,F(xiàn)PGA將在未來(lái)統(tǒng)治更多前端(如傳感器)應(yīng)用,而PDSP將會(huì)側(cè)重于復(fù)雜算法的應(yīng)用領(lǐng)域。可以說(shuō),F(xiàn)PGA是數(shù)字信號(hào)處理的一次重大變革。 算法是圖像處理應(yīng)用的靈魂,是硬件得以發(fā)揮其強(qiáng)大功能的根本。”共軛變換”圖像處理方法是一種新型的圖像處理算法,由鄭智捷博士上個(gè)世紀(jì)90年代初提出。這種算法使用基元形狀(meta-shape)技術(shù),而這種技術(shù)的特征正好具備幾何與拓?fù)涞碾p重特性,使得大量不同的基于形態(tài)的灰度圖像處理濾波器可用這種方法實(shí)現(xiàn)。該種算法在空域進(jìn)行圖像處理,無(wú)需進(jìn)行大量復(fù)雜的算術(shù)運(yùn)算,算法簡(jiǎn)單、快速、高效,易于硬件實(shí)現(xiàn)。通過(guò)十多年來(lái)的實(shí)驗(yàn)與實(shí)踐證明,在微光圖像,紅外圖像,X光圖像處理領(lǐng)域,”共軛變換”圖像處理方法確實(shí)有其獨(dú)特的優(yōu)異性能。本篇論文就針對(duì)”共軛變換”圖像處理方法在微光圖像處理領(lǐng)域的應(yīng)用,就如何在FPGA上實(shí)現(xiàn)”共軛變換”圖像處理方法展開(kāi)研究。首先在Matlab環(huán)境下,對(duì)常用的圖像增強(qiáng)算法和”共軛變換”圖像處理方法進(jìn)行了比較,并且在設(shè)計(jì)制作“FPGA視頻處理開(kāi)發(fā)平臺(tái)”的基礎(chǔ)上,用VHDL實(shí)現(xiàn)了”共軛變換”圖像處理方法的基本內(nèi)核并進(jìn)行了算法的硬件實(shí)現(xiàn)與效果驗(yàn)證。此外,本文還詳細(xì)地討論了視頻流的采集及其編碼解碼問(wèn)題以及I2C總線的FPGA實(shí)現(xiàn)。
上傳時(shí)間: 2013-04-24
上傳用戶(hù):CHENKAI
隨著電子技術(shù)的不斷發(fā)展,各種智能核儀器逐步走向自動(dòng)化、智能化、數(shù)字化和便攜式的方向發(fā)展。針對(duì)傳統(tǒng)的多道脈沖幅度分析器體積大,人機(jī)交互不友好,不方便現(xiàn)場(chǎng)分析等的缺陷[5]。新型的高速、集成度高、界面友好的多道脈沖幅度分析器的陸續(xù)出現(xiàn)填補(bǔ)了這一缺點(diǎn)。 隨著電子技術(shù)的發(fā)展,以ARM為核的處理器技術(shù)的應(yīng)用領(lǐng)域不斷擴(kuò)大,相比較單片機(jī)而言,它的主頻高、運(yùn)算速度快,可以滿(mǎn)足多道脈沖幅度分析器的苛刻的時(shí)間上的要求。而且ARM處理器功耗小,適合于功耗要求比較苛刻的地方,這些方面的特點(diǎn)正好滿(mǎn)足了便攜式多道脈沖幅度分析器野外勘察的要求。同時(shí),由于以ARM為核的處理器具有豐富的外設(shè)資源,這樣就簡(jiǎn)化了外設(shè)電路及芯片的使用,降低了功耗并增強(qiáng)了產(chǎn)品的信賴(lài)性。另外,ARM芯片可以方便的移植操作系統(tǒng),為多道脈沖幅度分析器多任務(wù)的管理和并行的處理,甚至硬實(shí)時(shí)功能的實(shí)現(xiàn)提供了前提。而且在ARM平臺(tái)使用嵌入式linux操作系統(tǒng)使多道脈沖幅度分析器的軟件易于升級(jí)。 智能化和小型化是多道脈沖幅度分析器的發(fā)展趨勢(shì)。智能化要求系統(tǒng)的自動(dòng)化程度高、操作簡(jiǎn)便、容錯(cuò)性好。智能化除了需要控制軟件外,還需要軟件命令的執(zhí)行者即硬件控制電路來(lái)實(shí)現(xiàn)相應(yīng)的控制邏輯,兩者的結(jié)合才能真正的實(shí)現(xiàn)智能化。小型化要求系統(tǒng)的體積小、功耗小、便于攜帶;小型化除了要求采用微功耗的器件,還要求電路板的尺寸盡量的小且所用元件盡量的少,但小型化的同時(shí)必須保持系統(tǒng)的智能化,即不能減少智能化所要求的復(fù)雜的邏輯和時(shí)序的控制功能。為此采用高集成度的ARM芯片實(shí)現(xiàn)控制電路能滿(mǎn)意地同時(shí)滿(mǎn)足智能化和小型化的要求。在研制的多道脈沖幅度分析器中,幾乎所有的控制都可以用控制芯片來(lái)實(shí)現(xiàn),如閾值設(shè)定、自動(dòng)穩(wěn)譜以及多道數(shù)據(jù)采集,在節(jié)省了元件的數(shù)目和電路板的尺寸的同時(shí)仍能保持系統(tǒng)的智能化程度。 Linux內(nèi)核精簡(jiǎn)而高效,可修改性強(qiáng),支持多種體系結(jié)構(gòu)的處理器等,使得它是一個(gè)非常適合于嵌入式開(kāi)發(fā)和應(yīng)用的操作系統(tǒng)。嵌入式Linux可以運(yùn)行的硬件平臺(tái)十分廣泛,從x86、MIPS、POWERPC到ARM,以及其他許多硬件體系結(jié)構(gòu)。目前在世界范圍內(nèi),ARM體系結(jié)構(gòu)的SOC逐漸占領(lǐng)32位嵌入式微處理器市場(chǎng),ARM處理器及技術(shù)的應(yīng)用幾乎已經(jīng)深入到各個(gè)領(lǐng)域,例如:工業(yè)控制,無(wú)線通訊,網(wǎng)絡(luò),消費(fèi)類(lèi)電子,成像等。 本課題采用三星公司生產(chǎn)的ARM(Advanced RISC Machines,先進(jìn)精簡(jiǎn)指令集機(jī)器)芯片S3C2410A設(shè)計(jì)并研制了一種便攜式的核數(shù)據(jù)采集系統(tǒng)設(shè)計(jì)方案。利用ARM芯片豐富的外設(shè)資源對(duì)傳統(tǒng)的多道脈沖幅度分析器進(jìn)行改進(jìn)和簡(jiǎn)化。系統(tǒng)由前端探測(cè)器系統(tǒng),以及由線性脈沖放大器、甄別電路、控制電路、采樣保持電路組成的前置電路,中央處理器模塊,顯示模塊,用戶(hù)交互模塊,存儲(chǔ)模塊,網(wǎng)絡(luò)傳輸模塊等多個(gè)模塊組成。本設(shè)計(jì)基于ARM9芯片S3C2410,并在此平臺(tái)上移植了嵌入式linux操作系統(tǒng)來(lái)進(jìn)行任務(wù)的調(diào)度和處理等。 電路板核心板部分設(shè)計(jì)采用6層PCB板結(jié)構(gòu),這樣增加了系統(tǒng)可靠性,提高了電磁兼容的穩(wěn)定性。數(shù)據(jù)采集系統(tǒng)是多道脈沖幅度分析器的核心,A/D轉(zhuǎn)換直接使用了S3C2410內(nèi)置的ADC(Analog to Digital Converter,模數(shù)轉(zhuǎn)換器),在2.5 MHz的轉(zhuǎn)換時(shí)鐘下最大轉(zhuǎn)換速度500 KSPS(Kilo-Samples per second,千采樣點(diǎn)每秒),滿(mǎn)足了系統(tǒng)最低轉(zhuǎn)換時(shí)間≤5 μs的要求,并且控制簡(jiǎn)單,簡(jiǎn)化了外部接口電路。由于SD(Secure Digital Card,安全數(shù)碼卡)卡存儲(chǔ)容量大、攜帶方便、成本低等優(yōu)點(diǎn),所以設(shè)計(jì)中采用其作為外部的數(shù)據(jù)存儲(chǔ)設(shè)備,其驅(qū)動(dòng)部分采用SD卡軟件包,為開(kāi)發(fā)帶來(lái)了方便。本設(shè)計(jì)采用640*480的6.4寸LCD(Liquid Crystal Display,液晶顯示)屏作為人機(jī)交互的顯示部分,并且通過(guò)Qt/Embedded為系統(tǒng)提供圖形用戶(hù)界面的應(yīng)用框架和窗口系統(tǒng)。其中包括了波形顯示部分和用戶(hù)菜單設(shè)置部分,這樣方便了用戶(hù)操作。系統(tǒng)的數(shù)據(jù)存取方面是基于SQLite嵌入式小型數(shù)據(jù)庫(kù)而進(jìn)行的。為了方便數(shù)據(jù)向上位機(jī)的傳輸,系統(tǒng)設(shè)計(jì)中采用XML(Extensible Markup Language,可擴(kuò)展標(biāo)記語(yǔ)言)格式來(lái)組織傳輸?shù)臄?shù)據(jù),通過(guò)基于TCP/IP(Transmission Control Protocol/Internet Protocol)協(xié)議的Linux下Socket套接字編程,來(lái)進(jìn)行與上位機(jī)或PC(Personal Computer,個(gè)人計(jì)算機(jī)或桌面機(jī))等的連接和數(shù)據(jù)傳輸。
標(biāo)簽: ARMLinux 多道 分析器 脈沖幅度
上傳時(shí)間: 2013-04-24
上傳用戶(hù):tzl1975
隨著生物工程及醫(yī)學(xué)影像學(xué)的發(fā)展,磁共振成像在醫(yī)學(xué)診斷學(xué)方面發(fā)揮著越來(lái)越重要的角色。磁場(chǎng)的均勻性是大型醫(yī)療設(shè)備——核磁共振(MRI)成像的理論基礎(chǔ),是評(píng)價(jià)該設(shè)備的一個(gè)重要的技術(shù)參數(shù),磁場(chǎng)的均勻性分析也是電磁場(chǎng)理論分析的一個(gè)重要方向。良好、穩(wěn)定的磁場(chǎng)均勻性對(duì)核磁共振圖像的信噪比(SNR)的提高有重要的意義,同時(shí)也是飽和壓脂序列實(shí)現(xiàn)的唯一條件。 該課題的主要內(nèi)容是在介紹磁共振成像原理與磁共振超導(dǎo)磁體的超導(dǎo)勻場(chǎng)線圈的形狀及位置的基礎(chǔ)上,分析各個(gè)線圈中電流的大小與空間某點(diǎn)磁場(chǎng)強(qiáng)度的關(guān)系。同時(shí)借鑒磁共振成像原理,設(shè)計(jì)輔助測(cè)量水膜,對(duì)空間某一特定半徑的球體腔內(nèi)各點(diǎn)的磁場(chǎng)強(qiáng)度進(jìn)行自動(dòng)化測(cè)量。在當(dāng)前使用的被動(dòng)式勻場(chǎng)的基礎(chǔ)上,利用分析軟件,對(duì)線圈的選擇及電流的大小進(jìn)行計(jì)算與優(yōu)化。實(shí)驗(yàn)結(jié)果表明效果良好,磁場(chǎng)均勻度有很大的改善。 采用的主要方法是利用磁共振成像原理及傅里葉轉(zhuǎn)化技術(shù)去設(shè)計(jì)一種精確、方便、快捷的勻場(chǎng)方法。通過(guò)計(jì)算機(jī)模擬及有限元分析的方法進(jìn)行計(jì)算、優(yōu)化,最終得到理想的磁場(chǎng)均勻度。 良好的磁場(chǎng)均勻性是磁共振成像的基礎(chǔ),是飽和壓脂序列(FATSAT)、平面回波成像(EPI)、彌散成像、頻譜分析等一系列近幾年新出現(xiàn)的先進(jìn)序列實(shí)現(xiàn)的前提條件。從而為臨床醫(yī)學(xué)提供了一種先進(jìn)的檢查手段,為疾病診治的及時(shí)性、準(zhǔn)確性、可靠性及病灶確切位置的判斷都提供了基礎(chǔ)。 該文所介紹的磁場(chǎng)均勻性測(cè)量、分析方法以及在此基礎(chǔ)上設(shè)計(jì)的勻場(chǎng)計(jì)算分析軟件已在多臺(tái)磁共振安裝調(diào)試過(guò)程中得到應(yīng)用,達(dá)到了預(yù)期的目的,能夠滿(mǎn)足現(xiàn)場(chǎng)調(diào)試的要求。該方法對(duì)于今后超導(dǎo)磁體磁共振的磁場(chǎng)均勻性調(diào)試,及在醫(yī)學(xué)影像學(xué)方面的發(fā)展有很好的應(yīng)用價(jià)值。該項(xiàng)技術(shù)在該領(lǐng)域的推廣必然會(huì)提高磁場(chǎng)均勻性的精度,推動(dòng)醫(yī)學(xué)影像學(xué)及臨床診斷學(xué)的發(fā)展。并能帶來(lái)良好的社會(huì)效益及經(jīng)濟(jì)效益,具有關(guān)闊的應(yīng)用前景。
標(biāo)簽: 磁共振 超導(dǎo)磁體 磁場(chǎng)
上傳時(shí)間: 2013-04-24
上傳用戶(hù):tianjinfan
磁共振成像(MRI)由于自身獨(dú)特的成像特點(diǎn),使得其處理方法不同于一般圖像.根據(jù)不同的應(yīng)用目的,該文分別提出了MRI圖像去噪和分割兩個(gè)算法.首先,該文針對(duì)MRI重建后圖像噪聲分布的實(shí)際特點(diǎn),提出了基于小波變換的MRI圖像去噪算法.該算法詳細(xì)闡明了MRI圖像Rician噪聲的特點(diǎn),首先對(duì)與噪聲和邊緣相關(guān)的小波系數(shù)進(jìn)行建模,然后利用最大似然估計(jì)來(lái)進(jìn)行參數(shù)估計(jì),同時(shí)利用連續(xù)尺度間的尺度相關(guān)性特點(diǎn)來(lái)進(jìn)行函數(shù)升級(jí),以便獲得最佳萎縮函數(shù),進(jìn)一步提高圖像的質(zhì)量,最終取得了一定的效果.與此同時(shí),該文對(duì)MRI圖像的進(jìn)一步的分析與應(yīng)用展開(kāi)了一定研究,提出了一種改進(jìn)的快速模糊C均值聚類(lèi)魯棒分割算法.該算法先用K均值聚類(lèi)方法得到初始聚類(lèi)中心點(diǎn),同時(shí)考慮鄰域?qū)Ψ指罱Y(jié)果的影響,對(duì)目標(biāo)函數(shù)加以改進(jìn),用來(lái)克服噪聲和非均勻場(chǎng)對(duì)MRI圖像分割的影響,達(dá)到魯棒分割的目的,為進(jìn)一步圖像處理和分析打下基礎(chǔ).通過(guò)實(shí)驗(yàn),我們發(fā)現(xiàn),無(wú)論是針對(duì)模擬圖像還是實(shí)際圖像,該文所提出的兩個(gè)算法都取得了較好的效果,達(dá)到了預(yù)期的目的.
上傳時(shí)間: 2013-04-24
上傳用戶(hù):zhichenglu
現(xiàn)代社會(huì)中相控陣?yán)走_(dá)的應(yīng)用越來(lái)越廣泛,相控陣?yán)走_(dá)在目標(biāo)識(shí)別、空間探測(cè)、雷達(dá)成像等先進(jìn)技術(shù)領(lǐng)域的研究不斷深入。相控陣?yán)走_(dá)的各個(gè)部分開(kāi)始采用全數(shù)字化的控制方式,這對(duì)波束控制器提出了更高的技術(shù)要求:運(yùn)算速度快、設(shè)備量少、數(shù)據(jù)吞吐量大、工作方式多、集成度高。為適應(yīng)這些要求,結(jié)合嵌入式技術(shù)的發(fā)展,論文先介紹了相控陣?yán)走_(dá)波控系統(tǒng)的基本功能和發(fā)展趨勢(shì),然后闡述了波束控制系統(tǒng)的實(shí)現(xiàn)方法,接著提出基于嵌入式ARM(Advanced RISC Machines)的雷達(dá)波束控制主控系統(tǒng)的詳細(xì)設(shè)計(jì)方案和開(kāi)發(fā)調(diào)試過(guò)程,論證了基于ARM嵌入式處理器實(shí)現(xiàn)雷達(dá)波束控制主控系統(tǒng)的運(yùn)算、控制、通信等功能的可行性,最后給出了波控分系統(tǒng)通常采用的幾種工程實(shí)現(xiàn)方法和其原理框圖,通過(guò)軟硬件相結(jié)合的設(shè)計(jì)滿(mǎn)足雷達(dá)波控系統(tǒng)對(duì)組件的控制功能,完善波控系統(tǒng)的通用化和系列化設(shè)計(jì)思想。
標(biāo)簽: ARM 嵌入式 雷達(dá) 控制系統(tǒng)
上傳時(shí)間: 2013-04-24
上傳用戶(hù):KIM66
摘要:"紅外弱小目標(biāo)檢測(cè)"是紅外搜索跟蹤系統(tǒng)、紅外雷達(dá)預(yù)警系統(tǒng)、紅外成像跟蹤系統(tǒng)的核心技術(shù),因此紅外小目標(biāo)的檢測(cè)是當(dāng)前一項(xiàng)重要的研究課題.目前的發(fā)展方向是研究運(yùn)算量小、性能高、利于硬件實(shí)時(shí)實(shí)現(xiàn)的檢測(cè)和跟蹤算法.該文在前人研究的基礎(chǔ)上,著重研究了Marr視覺(jué)計(jì)算理論在紅外小目標(biāo)檢測(cè)技術(shù)中的應(yīng)用.從Marr算法的理論基礎(chǔ)——高斯平滑濾波器與拉普拉斯算子的相關(guān)知識(shí)以及Marr的計(jì)算視覺(jué)理論基礎(chǔ)開(kāi)始,進(jìn)行了 2G(Laplacian of Gaussian,高斯—拉普拉斯)濾波器、LoG(Laplacian ofGaussian,高斯—拉普拉斯)模板以及 2G濾波器在人類(lèi)視覺(jué)、邊緣檢測(cè)、邊緣處理的物理意義以及神經(jīng)生理學(xué)意義方面的分析討論,提出了易于FPGA(Field Programmable Gate Array,現(xiàn)場(chǎng)可編程門(mén)陣列)實(shí)現(xiàn)的基于Marr計(jì)算視覺(jué)的紅外圖像小目標(biāo)檢測(cè)方法.該方法可根據(jù)目標(biāo)大小自動(dòng)設(shè)計(jì)檢測(cè)模板,在濾除不相關(guān)的噪聲的同時(shí)又保留閉合的目標(biāo)邊緣,從而檢測(cè)出目標(biāo).將該方法用FPGA實(shí)現(xiàn),滿(mǎn)足了檢測(cè)過(guò)程中的實(shí)時(shí)性.考慮到工程中的應(yīng)用,該文對(duì)該方法在FPGA中的具體實(shí)現(xiàn)給出了設(shè)計(jì)總體思路和詳細(xì)流程.由于FPGA具有對(duì)圖像數(shù)據(jù)的實(shí)時(shí)處理能力,而且該算法在FPGA中的具體實(shí)現(xiàn)中對(duì)資源的合理使用進(jìn)行了綜合考慮,因此該算法能夠?qū)崟r(shí)、有效地實(shí)現(xiàn)目標(biāo)檢測(cè).并在此基礎(chǔ)上對(duì)小目標(biāo)的檢測(cè)研究前景進(jìn)行展望.
標(biāo)簽: FPGA 紅外目標(biāo)檢測(cè) 技術(shù)研究
上傳時(shí)間: 2013-07-04
上傳用戶(hù):萌萌噠小森森
ASIC對(duì)產(chǎn)品成本和靈活性有一定的要求.基于MCU方式的ASIC具有較高的靈活性和較低的成本,然而抗干擾性和可靠性相對(duì)較低,運(yùn)算速度也受到限制.常規(guī)ASIC的硬件具有速度優(yōu)勢(shì)和較高的可靠性及抗干擾能力,然而不是靈活性較差,就是成本較高.與傳統(tǒng)硬件(CHW)相比,具有一定可配置特性的場(chǎng)可編程門(mén)陣列(FPGA)的出現(xiàn),使建立在可再配置硬件基礎(chǔ)上的進(jìn)化硬件(EHW)成為智能硬件電路設(shè)計(jì)的一種新方法.作為進(jìn)化算法和可編程器件技術(shù)相結(jié)合的產(chǎn)物,可重構(gòu)FPGA的研究屬于EHW的研究范疇,是研究EHW的一種具體的實(shí)現(xiàn)方法.論文認(rèn)為面向分類(lèi)的專(zhuān)用類(lèi)可重構(gòu)FPGA(ASR-FPGA)的研究,可使可重構(gòu)電路粒度劃分的針對(duì)性更強(qiáng)、設(shè)計(jì)更易實(shí)現(xiàn).論文研究的可重構(gòu)FPGA的BCH通訊糾錯(cuò)碼進(jìn)化電路是一類(lèi)ASR-FPGA電路的具體方法,具有一定的實(shí)用價(jià)值.論文所做的工作主要包括:(1)BCH編譯碼電路的設(shè)計(jì)——求取實(shí)驗(yàn)用BCH碼的生成多項(xiàng)式和校驗(yàn)多項(xiàng)式及其相應(yīng)的矩陣并構(gòu)造實(shí)驗(yàn)用BCH碼;(2)建立基于可重構(gòu)FPGA的基核——構(gòu)造具有可重構(gòu)特性的硬件功能單元,以此作為可重構(gòu)BCH碼電路的設(shè)計(jì)基礎(chǔ);(3)構(gòu)造實(shí)現(xiàn)可重構(gòu)BCH糾錯(cuò)碼電路的方法——建立可重構(gòu)糾錯(cuò)碼硬件電路算法并進(jìn)行實(shí)驗(yàn)驗(yàn)證;(4)在可重構(gòu)糾錯(cuò)碼電路基礎(chǔ)上,構(gòu)造進(jìn)化硬件控制功能塊的結(jié)構(gòu),完成各進(jìn)化RLA控制模塊的驗(yàn)證和實(shí)現(xiàn).課題是將可重構(gòu)BCH碼的編譯碼電路的實(shí)現(xiàn)作為一類(lèi)ASR-FPGA的研究目標(biāo),主要成果是根據(jù)可編程邏輯電路的特點(diǎn),選擇一種可編程樹(shù)的電路模型,并將它作為可重構(gòu)FPGA電路的基核T;通過(guò)對(duì)循環(huán)BCH糾錯(cuò)碼的構(gòu)造原理和電路結(jié)構(gòu)的研究,將基核模型擴(kuò)展為能滿(mǎn)足糾錯(cuò)碼電路需要的糾錯(cuò)碼基本功能單元T;以T作為再劃分的基本單元,對(duì)FPGA進(jìn)行"格式化",使T規(guī)則排列在FPGA上,通過(guò)對(duì)T的控制端的不同配置來(lái)實(shí)現(xiàn)糾錯(cuò)碼的各個(gè)功能單元;在可重構(gòu)基核的基礎(chǔ)上提出了糾錯(cuò)碼重構(gòu)電路的嵌套式GA理論模型,將嵌套式GA的染色體串作為進(jìn)化硬件描述語(yǔ)言,通過(guò)轉(zhuǎn)換為相應(yīng)的VHDL語(yǔ)言描述以實(shí)現(xiàn)硬件電路;采用RLA模型的有限狀態(tài)機(jī)FSM方式實(shí)現(xiàn)了可重構(gòu)糾錯(cuò)碼電路的EHW的各個(gè)控制功能塊.在實(shí)驗(yàn)方面,利用Xilinx FPGA開(kāi)發(fā)系統(tǒng)中的VHDL語(yǔ)言和電路圖相結(jié)合的設(shè)計(jì)方法建立了循環(huán)糾錯(cuò)碼基核單元的可重構(gòu)模型,進(jìn)行循環(huán)糾錯(cuò)BCH碼的電路和功能仿真,在Xilinx公司的Virtex600E芯片進(jìn)行了FPGA實(shí)現(xiàn).課題在研究模型上選取的是比較基本的BCH糾錯(cuò)碼電路,立足于解決基于可重構(gòu)FPGA核的設(shè)計(jì)的基本問(wèn)題.課題的研究成果及其總結(jié)的一套ASR-FPGA進(jìn)化硬件電路的設(shè)計(jì)方法對(duì)實(shí)際的進(jìn)化硬件設(shè)計(jì)具有一定的實(shí)際指導(dǎo)意義,提出的基于專(zhuān)用類(lèi)基核FPGA電路結(jié)構(gòu)的研究方法為新型進(jìn)化硬件的器件結(jié)構(gòu)的設(shè)計(jì)也可提供一種借鑒.
標(biāo)簽: FPGA 可重構(gòu) 通訊 糾錯(cuò)
上傳時(shí)間: 2013-07-01
上傳用戶(hù):myworkpost
蟲(chóng)蟲(chóng)下載站版權(quán)所有 京ICP備2021023401號(hào)-1