obot control, a subject aimed at making robots behave as desired, has been
extensively developed for more than two decades. Among many books being
published on this subject, a common feature is to treat a robot as a single
system that is to be controlled by a variety of control algorithms depending on
different scenarios and control objectives. However, when a robot becomes more
complex and its degrees of freedom of motion increase substantially, the needed
control computation can easily go beyond the scope a modern computer can
handle within a pre-specified sampling period. A solution is to base the control
on subsystem dynamics.
High-Speed, Low-Power
Dual Operational Amplifier
The AD826 features high output current drive capability of
50 mA min per amp, and is able to drive unlimited capacitive
loads. With a low power supply current of 15 mA max for both
amplifiers, the AD826 is a true general purpose operational
amplifier.
The AD826 is ideal for power sensitive applications such as video
cameras and portable instrumentation. The AD826 can operate
from a single +5 V supply, while still achieving 25 MHz of band
width. Furthermore the AD826 is fully specified from a single
+5 V to ±15 V power supplies.
The AD826 excels as an ADC/DAC buffer or active filter in
data acquisition systems and achieves a settling time of 70 ns
to 0.01%, with a low input offset voltage of 2 mV max. The
AD826 is available in small 8-lead plastic mini-DIP and SO
packages.
transimpedance linearization circuitry. This allows it to drive
video loads with excellent differential gain and phase perfor
mance on only 50 mW of power. The AD8001 is a current
feedback amplifier and features gain flatness of 0.1 dB to 100 MHz
while offering differential gain and phase error of 0.01% and
0.025°. This makes the AD8001 ideal for professional video
electronics such as cameras and video switchers. Additionally,
the AD8001’s low distortion and fast settling make it ideal for
buffer high-speed A-to-D converters.
The AD8001 offers low power of 5.5 mA max (VS = ±5 V) and
can run on a single +12 V power supply, while being capable of
delivering over 70 mA of load current. These features make this
amplifier ideal for portable and battery-powered applications
where size and power are critical.
The outstanding bandwidth of 800 MHz along with 1200 V/μs
of slew rate make the AD8001 useful in many general purpose
high-speed applications where dual power supplies of up to ±6 V
and single supplies from 6 V to 12 V are needed. The AD8001 is
available in the industrial temperature range of –40°C to +85°C.
VHDL編寫的4選一數(shù)據(jù)選擇器
entity mux41a is
port(a,b:in
std_logic;
s1,s2,s3,s4:in std_logic;
y:
out std_logic);
end entity mux41a;
architecture one of mux41a is
signal ab:std_logic_vector(1 downto 0);
The contemporary view of the Smart City is very much static and infrastructure-
centric, focusing on installation and subsequent management of Edge devices and
analytics of data provided by these devices. While this still allows a more efficient
management of the city’s infrastructure, optimizations and savings in different do-
mains, the existing architectures are currently designed as single-purpose, vertically
siloed solutions. This hinders active involvement of a variety of stakeholders (e.g.,
citizens and businesses) who naturally form part of the city’s ecosystem and have an
inherent interest in jointly coordinating and influencing city-level activities.
The current methods of communications are becoming less relevant under
today’s growing demand for and reliance on constant connectivity. Of
decreasing relevance are the models of a single radio to perform a single
task. The expansion of wireless access points among coffee shops, airports,
malls, and other public arenas is opening up opportunities for new services
and applications.
The genesis for this book was my involvement with the development of the
SystemView (now SystemVue) simulation program at Elanix, Inc. Over several
years of development, technical support, and seminars, several issues kept recur-
ring. One common question was, “How do you simulate (such and such)?” The sec-
ond set of issues was based on modern communication systems, and why particular
developers did what they did. This book is an attempt to gather these issues into a
single comprehensive source.
The new digital radio system DAB (Digital Audio Broadcasting, nowadays often called
Digital Radio) is a very innovative and universal multimedia broadcast system which will
replace the existing AM and FM audio broadcast services in many parts of the world in
the future. It was developed in the 1990s by the Eureka 147/DAB project. DAB is very
well suited for mobile reception and provides very high robustness against multipath
reception. It allows use of single frequency networks (SFNs) for high frequency
efficiency.
Wireless technologies like GSM, UMTS, LTE, Wireless LAN and Bluetooth have
revolutionized the way we communicate by making services like telephony and Internet
access available anytime and from almost anywhere. Today, a great variety of technical
publications offer background information about these technologies but they all fall
short in one way or another. Books covering these technologies usually describe only
one of the systems in detail and are generally too complex as a first introduction. The
Internet is also a good source, but the articles one finds are usually too short and super-
ficial or only deal with a specific mechanism of one of the systems. For this reason, it
was difficult for me to recommend a single publication to students in my telecommunication
classes, which I have been teaching in addition to my work in the wireless telecommunication
industry. This book aims to change this.