Commercially available active noise control headphones rely on fixed analog controllers to drive "anti-noise" loudspeakers. Our design uses an adaptive controller to optimally cancel unwanted acoustic noise. This headphone would be particularly useful for workers who operate or work near heavy machinery and engines because the noise is selectively eliminated. Desired sounds, such as speech and warning signals, are left to be heard clearly. The adaptive control algorithm is implemented on a Texas Instruments (TI™ )
1
TMS320C30GEL digital signal processor (DSP), which drives a Sony CD550 headphone/microphone system. Our experiments indicate that adaptive noise control results in a dramatic improvement in performance over fixed noise control. This improvement is due to the availability of high-performance programmable DSPs and the self-optimizing and tracking
capabilities of the adaptive controller in response to the surrounding noise.
An Overview of Smart Card Security.
The smart card, an intelligent token, is a credit card sized plastic card embedded with an integrated circuit chip. It provides not only memory capacity, but computational capability as well. The self-containment of smart card makes it resistant to attack as it does not need to depend upon potentially vulnerable external resources. Because of this characteristic, smart cards are often used in different applications which require strong security protection and authentication.
as a message came into prominence with the publication in 1948 of an influential paper by Claude Shannon, "A Mathematical Theory of Communication." This paper provides the foundations of information theory and endows the word information not only with a technical meaning but also a measure. If the sending device is equally likely to send any one of a set of N messages, then the preferred measure of "the information produced when one message is chosen from the set" is the base two logarithm of N (This measure is called self-information). In this paper, Shannon cont
Among the many features built into Microchip’sEnhanced FLASH Microcontroller devices is the capability of the program memory to self-program. This very useful feature has been deliberately included to give the user the ability to perform bootloading operations.Devices like the PIC18F452 are designed with a designated“boot block”, a small section of protectable program memory allocated specifically for bootload firmware.
Among the many features built into Microchip’sEnhanced FLASH Microcontroller devices is the capability of the program memory to self-program. This very useful feature has been deliberately included to give the user the ability to perform bootloading operations.Devices like the PIC18F452 are designed with a designated“boot block”, a small section of protectable program memory allocated specifically for bootload firmware.
The 4.0 kbit/s speech codec described in this paper is based on a
Frequency Domain Interpolative (FDI) coding technique, which
belongs to the class of prototype waveform Interpolation (PWI)
coding techniques. The codec also has an integrated voice
activity detector (VAD) and a noise reduction capability. The
input signal is subjected to LPC analysis and the prediction
residual is separated into a slowly evolving waveform (SEW) and
a rapidly evolving waveform (REW) components. The SEW
magnitude component is quantized using a hierarchical
predictive vector quantization approach. The REW magnitude is
quantized using a gain and a sub-band based shape. SEW and
REW phases are derived at the decoder using a phase model,
based on a transmitted measure of voice periodicity. The spectral
(LSP) parameters are quantized using a combination of scalar
and vector quantizers. The 4.0 kbits/s coder has an algorithmic
delay of 60 ms and an estimated floating point complexity of
21.5 MIPS. The performance of this coder has been evaluated
using in-house MOS tests under various conditions such as
background noise. channel errors, self-tandem. and DTX mode
of operation, and has been shown to be statistically equivalent to
ITU-T (3.729 8 kbps codec across all conditions tested.
The SP2526A device is a dual +3.0V to +5.5V USB Supervisory Power Control Switch ideal
for self-powered and bus-powered Universal Serial Bus (USB) applications. Each switch has
low on-resistance (110mΩ typical) and can supply 500mA minimum. The fault currents are
limited to 1.0A typical and the flag output pin for each switch is available to indicate fault
conditions to the USB controller. The thermal shutdown feature will prevent damage to the
device when subjected to excessive current loads. The undervoltage lockout feature will
ensure that the device will remain off unless there is a valid input voltage present.
The recent developments in full duplex (FD) commu-
nication promise doubling the capacity of cellular networks using
self interference cancellation (SIC) techniques. FD small cells
with device-to-device (D2D) communication links could achieve
the expected capacity of the future cellular networks (5G). In
this work, we consider joint scheduling and dynamic power
algorithm (DPA) for a single cell FD small cell network with
D2D links (D2DLs). We formulate the optimal user selection and
power control as a non-linear programming (NLP) optimization
problem to get the optimal user scheduling and transmission
power in a given TTI. Our numerical results show that using
DPA gives better overall throughput performance than full power
transmission algorithm (FPA). Also, simultaneous transmissions
(combination of uplink (UL), downlink (DL), and D2D occur
80% of the time thereby increasing the spectral efficiency and
network capacity
Mobilenetworkoperatorswillmeetmanychallengesinthecomingyears.Itisexpectedthatthe
numberofpeopleconnected,wirelineandwireless,willreachfivebillionby2015.Atthesame
time, people use more wireless services and they expect similar user experience to what they
can now get from fixed networks. Because of that we will see a hundred-fold increase in
network traffic in the near future. At the same time markets are saturating and the revenue per
bit is dropping.