亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁(yè)| 資源下載| 資源專輯| 精品軟件
登錄| 注冊(cè)

Self-training

  • 3.3v看門狗芯片

    The STWD100 watchdog timer circuits are self-contained devices which prevent systemfailures that are caused by certain types of hardware errors (non-responding peripherals,bus contention, etc.) or software errors (bad code jump, code stuck in loop, etc.).The STWD100 watchdog timer has an input, WDI, and an output, WDO (see Figure 2). Theinput is used to clear the internal watchdog timer periodically within the specified timeoutperiod, twd (see Section 3: Watchdog timing). While the system is operating correctly, itperiodically toggles the watchdog input, WDI. If the system fails, the watchdog timer is notreset, a system alert is generated and the watchdog output, WDO, is asserted (seeSection 3: Watchdog timing).The STWD100 circuit also has an enable pin, EN (see Figure 2), which can enable ordisable the watchdog functionality. The EN pin is connected to the internal pull-downresistor. The device is enabled if the EN pin is left floating.

    標(biāo)簽: 3.3 看門狗 芯片

    上傳時(shí)間: 2013-10-22

    上傳用戶:taiyang250072

  • PCB被動(dòng)組件的隱藏特性解析

    PCB 被動(dòng)組件的隱藏特性解析 傳統(tǒng)上,EMC一直被視為「黑色魔術(shù)(black magic)」。其實(shí),EMC是可以藉由數(shù)學(xué)公式來(lái)理解的。不過(guò),縱使有數(shù)學(xué)分析方法可以利用,但那些數(shù)學(xué)方程式對(duì)實(shí)際的EMC電路設(shè)計(jì)而言,仍然太過(guò)復(fù)雜了。幸運(yùn)的是,在大多數(shù)的實(shí)務(wù)工作中,工程師并不需要完全理解那些復(fù)雜的數(shù)學(xué)公式和存在于EMC規(guī)范中的學(xué)理依據(jù),只要藉由簡(jiǎn)單的數(shù)學(xué)模型,就能夠明白要如何達(dá)到EMC的要求。本文藉由簡(jiǎn)單的數(shù)學(xué)公式和電磁理論,來(lái)說(shuō)明在印刷電路板(PCB)上被動(dòng)組件(passivecomponent)的隱藏行為和特性,這些都是工程師想讓所設(shè)計(jì)的電子產(chǎn)品通過(guò)EMC標(biāo)準(zhǔn)時(shí),事先所必須具備的基本知識(shí)。導(dǎo)線和PCB走線導(dǎo)線(wire)、走線(trace)、固定架……等看似不起眼的組件,卻經(jīng)常成為射頻能量的最佳發(fā)射器(亦即,EMI的來(lái)源)。每一種組件都具有電感,這包含硅芯片的焊線(bond wire)、以及電阻、電容、電感的接腳。每根導(dǎo)線或走線都包含有隱藏的寄生電容和電感。這些寄生性組件會(huì)影響導(dǎo)線的阻抗大小,而且對(duì)頻率很敏感。依據(jù)LC 的值(決定自共振頻率)和PCB走線的長(zhǎng)度,在某組件和PCB走線之間,可以產(chǎn)生自共振(self-resonance),因此,形成一根有效率的輻射天線。在低頻時(shí),導(dǎo)線大致上只具有電阻的特性。但在高頻時(shí),導(dǎo)線就具有電感的特性。因?yàn)樽兂筛哳l后,會(huì)造成阻抗大小的變化,進(jìn)而改變導(dǎo)線或PCB 走線與接地之間的EMC 設(shè)計(jì),這時(shí)必需使用接地面(ground plane)和接地網(wǎng)格(ground grid)。導(dǎo)線和PCB 走線的最主要差別只在于,導(dǎo)線是圓形的,走線是長(zhǎng)方形的。導(dǎo)線或走線的阻抗包含電阻R和感抗XL = 2πfL,在高頻時(shí),此阻抗定義為Z = R + j XL j2πfL,沒有容抗Xc = 1/2πfC存在。頻率高于100 kHz以上時(shí),感抗大于電阻,此時(shí)導(dǎo)線或走線不再是低電阻的連接線,而是電感。一般而言,在音頻以上工作的導(dǎo)線或走線應(yīng)該視為電感,不能再看成電阻,而且可以是射頻天線。

    標(biāo)簽: PCB 被動(dòng)組件

    上傳時(shí)間: 2013-11-16

    上傳用戶:極客

  • 國(guó)外游戲開發(fā)者雜志2003年第二期配套代碼

    國(guó)外游戲開發(fā)者雜志2003年第二期配套代碼,包含了Jon Blow的交互工具的版本更新,使用了一個(gè)Kohonen Self-Organizing Feature Map來(lái)區(qū)分系統(tǒng)的行為

    標(biāo)簽: 2003 開發(fā)者 代碼

    上傳時(shí)間: 2014-01-19

    上傳用戶:拔絲土豆

  • 最新的支持向量機(jī)工具箱

    最新的支持向量機(jī)工具箱,有了它會(huì)很方便 1. Find time to write a proper list of things to do! 2. Documentation. 3. Support Vector Regression. 4. Automated model selection. REFERENCES ========== [1] V.N. Vapnik, "The Nature of Statistical Learning Theory", Springer-Verlag, New York, ISBN 0-387-94559-8, 1995. [2] J. C. Platt, "Fast training of support vector machines using sequential minimal optimization", in Advances in Kernel Methods - Support Vector Learning, (Eds) B. Scholkopf, C. Burges, and A. J. Smola, MIT Press, Cambridge, Massachusetts, chapter 12, pp 185-208, 1999. [3] T. Joachims, "Estimating the Generalization Performance of a SVM Efficiently", LS-8 Report 25, Universitat Dortmund, Fachbereich Informatik, 1999.

    標(biāo)簽: 支持向量機(jī) 工具箱

    上傳時(shí)間: 2013-12-16

    上傳用戶:亞亞娟娟123

  • Abbrevia is a compression toolkit for Borland Delphi, C++Builder, & Kylix. It supports PKZIP 4, Micr

    Abbrevia is a compression toolkit for Borland Delphi, C++Builder, & Kylix. It supports PKZIP 4, Microsoft CAB, TAR, & gzip formats & the creation of self-extracting archives. It includes visual components that simplify the manipulation of ZIP files.

    標(biāo)簽: compression Abbrevia supports Borland

    上傳時(shí)間: 2014-01-13

    上傳用戶:來(lái)茴

  • LVQ學(xué)習(xí)矢量化算法源程序 This directory contains code implementing the Learning vector quantization network.

    LVQ學(xué)習(xí)矢量化算法源程序 This directory contains code implementing the Learning vector quantization network. Source code may be found in LVQ.CPP. Sample training data is found in LVQ1.PAT. Sample test data is found in LVQTEST1.TST and LVQTEST2.TST. The LVQ program accepts input consisting of vectors and calculates the LVQ network weights. If a test set is specified, the winning neuron (class) for each neuron is identified and the Euclidean distance between the pattern and each neuron is reported. Output is directed to the screen.

    標(biāo)簽: implementing quantization directory Learning

    上傳時(shí)間: 2015-05-02

    上傳用戶:hewenzhi

  • This program demonstrates some function approximation capabilities of a Radial Basis Function Networ

    This program demonstrates some function approximation capabilities of a Radial Basis Function Network. The user supplies a set of training points which represent some "sample" points for some arbitrary curve. Next, the user specifies the number of equally spaced gaussian centers and the variance for the network. Using the training samples, the weights multiplying each of the gaussian basis functions arecalculated using the pseudo-inverse (yielding the minimum least-squares solution). The resulting network is then used to approximate the function between the given "sample" points.

    標(biāo)簽: approximation demonstrates capabilities Function

    上傳時(shí)間: 2014-01-01

    上傳用戶:zjf3110

  • 摘 : 通過(guò)使用 peer-to-peer(P2P)計(jì)算模式在 Internet 物理拓?fù)浠A(chǔ)上建立一個(gè)稱為 P2P 覆蓋網(wǎng)絡(luò)(P overlay network)的虛擬拓?fù)浣Y(jié)構(gòu),有效地建立起一個(gè)基

    摘 : 通過(guò)使用 peer-to-peer(P2P)計(jì)算模式在 Internet 物理拓?fù)浠A(chǔ)上建立一個(gè)稱為 P2P 覆蓋網(wǎng)絡(luò)(P overlay network)的虛擬拓?fù)浣Y(jié)構(gòu),有效地建立起一個(gè)基于 Internet 的完全分布式自組織網(wǎng)絡(luò)路由模型 集中式自組織網(wǎng)絡(luò)路由模型(hierarchical aggregation self-organizing network,簡(jiǎn)稱 HASN).分別描述了 HASN 由模型的構(gòu)建目標(biāo)和體系結(jié)構(gòu),并詳細(xì)分析了 HASN 采用的基于 P2P 計(jì)算模式的分布式命名 路由發(fā)現(xiàn)和更 算法 HASN_Scale,并在仿真實(shí)驗(yàn)的基礎(chǔ)上,對(duì) HASN 路由模型的性能進(jìn)行了驗(yàn)證.

    標(biāo)簽: peer-to-peer P2P Internet overlay

    上傳時(shí)間: 2014-01-21

    上傳用戶:zhenyushaw

  • Blind Equalizer 的演算法主要是利用CMA及 LMS 的配合

    Blind Equalizer 的演算法主要是利用CMA及 LMS 的配合,當(dāng)CMA將EYE打開,使訊號(hào)趨近于正確值,就切換到LMS,利用Slicer的輸出當(dāng)作training sequence來(lái)調(diào)整Equalizer的系數(shù),而Carrier Recovery 的部份,則是將phase error track出來(lái)

    標(biāo)簽: Equalizer Blind CMA LMS

    上傳時(shí)間: 2013-12-28

    上傳用戶:it男一枚

  • C++編寫的機(jī)器學(xué)習(xí)算法 Lemga is a C++ package which consists of classes for several learning models and gener

    C++編寫的機(jī)器學(xué)習(xí)算法 Lemga is a C++ package which consists of classes for several learning models and generic algorithms for optimizing (training) the models

    標(biāo)簽: consists learning classes package

    上傳時(shí)間: 2014-01-21

    上傳用戶:wangchong

主站蜘蛛池模板: 麻江县| 綦江县| 昌都县| 东方市| 神农架林区| 东海县| 房产| 溧阳市| 于都县| 炎陵县| 深泽县| 嘉峪关市| 霍林郭勒市| 沁源县| 海原县| 阳朔县| 莱州市| 延边| 灵台县| 常宁市| 潮州市| 高清| 宁都县| 咸宁市| 临夏县| 谢通门县| 慈溪市| 泰兴市| 贵溪市| 宾阳县| 新宾| 疏勒县| 泗水县| 涞源县| 乐亭县| 进贤县| 砚山县| 育儿| 尉氏县| 襄垣县| 泉州市|