3D shape reconstruction matlab code. It used shape from defocus technique with least Squares. You can reconstruct 3D shape with only two different depth images.
標(biāo)簽: shape reconstruction technique defocus
上傳時(shí)間: 2014-01-07
上傳用戶:Zxcvbnm
Least Squares Fitting of Data
標(biāo)簽: Fitting Squares Least Data
上傳時(shí)間: 2013-12-27
上傳用戶:問題問題
least Squares method
標(biāo)簽: Squares method least
上傳時(shí)間: 2014-01-25
上傳用戶:lifangyuan12
System identification with adaptive filter using full and partial-update Least-Mean-Squares
標(biāo)簽: Least-Mean-Squares identification partial-update adaptive
上傳時(shí)間: 2014-01-02
上傳用戶:bibirnovis
System identification with adaptive filter using full and partial-update Recursive-Least-Squares
標(biāo)簽: Recursive-Least-Squares identification partial-update adaptive
上傳時(shí)間: 2013-12-30
上傳用戶:LouieWu
MATLAB Example Code : Non-Linear Least Squares --- Bearings-Only Measurement
標(biāo)簽: Bearings-Only Measurement Non-Linear Example
上傳時(shí)間: 2014-06-08
上傳用戶:fxf126@126.com
生物醫(yī)學(xué)信號(hào)是源于一個(gè)生物系統(tǒng)的一類信號(hào),像心音、腦電、生物序列和基因以及神經(jīng)活動(dòng)等,這些信號(hào)通常含有與生物系統(tǒng)生理和結(jié)構(gòu)狀態(tài)相關(guān)的信息,它們對(duì)這些系統(tǒng)狀態(tài)的研究和診斷具有很大的價(jià)值。信號(hào)拾取、采集和處理的正確與否直接影響到生物醫(yī)學(xué)研究的準(zhǔn)確性,如何有效地從強(qiáng)噪聲背景中提取有用的生物醫(yī)學(xué)信號(hào)是信號(hào)處理技術(shù)的重要問題。 設(shè)計(jì)自適應(yīng)濾波器對(duì)帶有工頻干擾的生物醫(yī)學(xué)信號(hào)進(jìn)行濾波,從而消除工頻干擾,獲得最佳的濾波效果是本研究要解決的問題。生物醫(yī)學(xué)信號(hào)具有信號(hào)弱、噪聲強(qiáng)、頻率范圍較低、隨機(jī)性強(qiáng)等特點(diǎn)。由于心電(electrocardiogram,ECG)信號(hào)的確定性、穩(wěn)定性、規(guī)則性都比其他生物信號(hào)高,便于準(zhǔn)確評(píng)估和檢測(cè)濾波效果,本研究采用ECG信號(hào)作為原始的模板信號(hào)。 本研究將新的電子芯片技術(shù)與現(xiàn)代信號(hào)處理技術(shù)相結(jié)合,從過去單一的軟件算法研究,轉(zhuǎn)向軟件與硬件結(jié)合,從而提高自適應(yīng)速度和精度,而且可以使系統(tǒng)的開發(fā)周期縮短、成本降低、容易升級(jí)和變更。 采用現(xiàn)場(chǎng)可編程邏輯器件(Field Programmable Gate Array,F(xiàn)PGA)作為新的ECG快速提取算法的硬件載體,加快信號(hào)處理的速度。為了將ECG快速提取算法轉(zhuǎn)換為常用的適合于FPGA芯片的定點(diǎn)數(shù)算法,研究中詳細(xì)分析了定點(diǎn)數(shù)的量化效應(yīng)對(duì)自適應(yīng)噪聲消除器的影響,以及對(duì)浮點(diǎn)數(shù)算法和定點(diǎn)數(shù)算法的復(fù)合自適應(yīng)濾波器的各種參數(shù)的選擇,如步長(zhǎng)因子和字長(zhǎng)選擇。研究中以定點(diǎn)數(shù)算法中的步長(zhǎng)因子和字長(zhǎng)選擇,作為FPGA設(shè)計(jì)的基礎(chǔ),利用串并結(jié)合的硬件結(jié)構(gòu)實(shí)現(xiàn)自適應(yīng)濾波器,并得到了預(yù)期的效果,準(zhǔn)確提取改善后的ECG信號(hào)。 研究中,在MATLAB(Matrix Laboratry)軟件的環(huán)境下模擬,選取帶有50Hz工頻干擾的不同信噪比的ECG原始信號(hào),在浮點(diǎn)數(shù)情況下,原始信號(hào)通過采用最小均方LMS(LeastMean Squares)算法的浮點(diǎn)數(shù)自適應(yīng)濾波器后,根據(jù)信噪比的改善和收斂速度,確定不同的最佳μ值,并在定點(diǎn)數(shù)情況下,在最佳μ值的情況下,原始信號(hào)通過采用LMs算法的定點(diǎn)數(shù)自適應(yīng)濾波器后,根據(jù)信噪比的改善效果和采用硬件的經(jīng)濟(jì)性,確定最佳的定點(diǎn)數(shù)。并了解LMS算法中步長(zhǎng)因子、定點(diǎn)數(shù)字長(zhǎng)值對(duì)信號(hào)信噪比、收斂速度和硬件經(jīng)濟(jì)性的影響。從而得出針對(duì)含有工頻干擾的不同信噪比的原始ECG,應(yīng)該采用什么樣的μ值和什么樣的定點(diǎn)數(shù)才能對(duì)原始ECG的改善和以后的硬件實(shí)現(xiàn)取得最佳的效果,并根據(jù)所得到的數(shù)據(jù)和結(jié)果,在FPGA上實(shí)現(xiàn)自適應(yīng)濾波器,使自適應(yīng)濾波器能對(duì)帶有工頻干擾的ECG原始信號(hào)有最佳的濾波效果。
上傳時(shí)間: 2013-04-24
上傳用戶:gzming
直線擬合的幾種算法,其中包括線性最小二乘,和兩種不同目標(biāo)函數(shù)的非線性最小二乘,用于比較這些方法的優(yōu)劣,另外matlab中說的robust least Squares方法沒有找到,希望有朋友能給穿一下:)
上傳時(shí)間: 2014-06-18
上傳用戶:大三三
This program demonstrates some function approximation capabilities of a Radial Basis Function Network. The user supplies a set of training points which represent some "sample" points for some arbitrary curve. Next, the user specifies the number of equally spaced gaussian centers and the variance for the network. Using the training samples, the weights multiplying each of the gaussian basis functions arecalculated using the pseudo-inverse (yielding the minimum least-Squares solution). The resulting network is then used to approximate the function between the given "sample" points.
標(biāo)簽: approximation demonstrates capabilities Function
上傳時(shí)間: 2014-01-01
上傳用戶:zjf3110
A fast customizable function for locating and measuring the peaks in noisy time-series signals. Adjustable parameters allow discrimination of "real" signal peaks from noise and background. Determines the position, height, and width of each peak by least-Squares curve-fitting.
標(biāo)簽: customizable time-series measuring function
上傳時(shí)間: 2015-08-10
上傳用戶:invtnewer
蟲蟲下載站版權(quán)所有 京ICP備2021023401號(hào)-1