Modeling and simulation of nonlinear systems provide communication system designers
with a tool to predict and verify overall system performance under nonlinearity and
complex communication signals. Traditionally, RF system designers use deterministic
signals (discrete tones), which can be implemented in circuit simulators, to predict the
performance of their nonlinear circuits/systems. However, RF system designers are usually
faced with the problem of predicting system performance when the input to the system
is real-world communication signals which have a random nature.
Since the first edition of the book was published, the field of modeling and simulation of
communication systems has grown and matured in many ways, and the use of simulation as a
day-to-day tool is now even more common practice. Many new modeling and simulation
approaches have been developed in the recent years, many more commercial simulation
packages are available, and the evolution of powerful general mathematical applications
packages has provided still more options for computer-aided design and analysis. With the
current interest in digital mobile communications, a primary area of application of modeling
and simulation is now to wireless systems of a different flavor than the traditional ones.
In the two years since this book was first published, ultra wideband (UWB) has
advanced and consolidated as a technology, and many more people are aware of the
possibilities for this exciting technology. We too have expanded and consolidated
materials in this second edition in the hope that ‘Ultra Wideband: Signals and Systems
in Communication Engineering’ will continue to prove a useful tool for many students
and engineers to come to an understanding of the basic technologies for UWB.
Wireless Mesh Networks (WMN) are believed to be a highly promising
technology and will play an increasingly important role in future
generation wireless mobile networks. WMN is characterized by
dynamic self-organization, self-configuration and self-healing to
enable quick deployment, easy maintenance, low cost, high scalability
and reliable services, as well as enhancing network capacity, connect-
ivity and resilience.
Failure analysis is invaluable in the learning process of electrostatic discharge (ESD) and
electrical overstress (EOS) protection design and development [1–8]. In the failure analysis
of EOS, ESD, and latchup events, there are a number of unique failure analysis processes
andinformationthatcanprovidesignificantunderstandingandillumination[4].Today,thereis
still no design methodology or computer-aided design (CAD) tool which will predict EOS,
ESDprotectionlevels,andlatchupinasemiconductorchip;thisisoneofthesignificantreasons
why failure analysis is critical to the ESD design discipline.
Dear Reader, this book project brings to you a unique study tool for ESD
protection solutions used in analog-integrated circuit (IC) design. Quick-start
learning is combined with in-depth understanding for the whole spectrum of cross-
disciplinary knowledge required to excel in the ESD field. The chapters cover
technical material from elementary semiconductor structure and device levels up
to complex analog circuit design examples and case studies.
The mature CMOS fabrication processes are available
in many IC foundries. It is cost-effective to leverage the
existing CMOS fabrication technologies to implement
MEMS devices. On the other hand, the MEMS devices
could also add values to the IC industry as the Moore’s law
reaching its limit. The CMOS MEMS could play a key role
to bridge the gap between the CMOS and MEMS
technologies. The CMOS MEMS also offers the advantage
of monolithic integration of ICs and micro mechanical
components.
You probably have heard all about what you can do with the Raspberry Pi. This credit-
card sized computer can be plugged into your TV or any HDMI monitor to replace a
typical computer. This little device is used in many computer projects, DIY electronics
projects and even as a learning tool for kids who want to learn the basics of computer
programming.
The world of home automation is an exciting field that has exploded over the past
few years with many new technologies in both the commercial and open source
worlds. This book provides a gateway for those interested in learning more about
this topic and building their own projects.
With the introduction of the Raspberry Pi computer in 2012, a small and powerful
tool is now available for the home automation enthusiast, programmer, and electronic
hobbyist. It allows them to augment their home with sensors and software.
The large-scale deployment of the smart grid (SG) paradigm could play a strategic role in
supporting the evolution of conventional electrical grids toward active, flexible and self-
healing web energy networks composed of distributed and cooperative energy resources.
From a conceptual point of view, the SG is the convergence of information and
operational technologies applied to the electric grid, providing sustainable options to
customers and improved security. Advances in research on SGs could increase the
efficiency of modern electrical power systems by: (i) supporting the massive penetration
of small-scale distributed and dispersed generators; (ii) facilitating the integration of
pervasive synchronized metering systems; (iii) improving the interaction and cooperation
between the network components; and (iv) allowing the wider deployment of self-healing
and proactive control/protection paradigms.