The MSP-FET430PIF is a Parallel Port interface (does not include target board) that is used to program and debug MSP430 FET Tools and test boards through the JTAG interface. This interface is included in our FET Tools, but sold without the development board. This interface uses a Parallel PC Port to communicate to the Debugger Software (IAR Kickstart software included) running on the PC. The interface uses the standard 14 pin header to communicate to the MSP430 device using the standard JTAG protocol.
The flash memory can be erased and programmed in seconds with only a few keystrokes, and since the MSP430 flash is extremely low power, no external power supply is required. The tool has an integrated software environment and connects directly to the PC which greatly simplifies the set-up and use of the tool. The flash development tool supports development with all MSP430 flash parts.
Features
MSP430 debugging interface to connect a MSP430-Flash-device to a Parallel port on a PC
Supports JTAG debug protocol (NO support for Spy-Bi-Wire (2-wire JTAG) debug protocol, Spy-Bi-Wire (2-wire JTAG) is supported by MSP-FET430UIF)
Parallel Port cable and a 14-conductor target cable
Full documentation on CD ROM
Integrated IAR Kickstart user interface which includes:
Assembler
Linker
Limulator
Source-level debugger
Limited C-compiler
Technical specifications:
Backwardly compatable with existing FET tool boards.
The MSP-FET430U14 is a powerful flash emulation tool to quickly begin application development on the MSP430 MCU. It includes USB debugging interface used to program and debug the MSP430 in-system through the JTAG interface or the pin saving Spy Bi-Wire (2-wire JTAG) protocol. The flash memory can be erased and programmed in seconds with only a few keystrokes, and since the MSP430 flash is ultra-low power, no external power supply is required.
The debugging tool interfaces the MSP430 to the included integrated software environment and includes code to start your design immediately. The MSP-FET430UIF development Tools supports development with all MSP430 flash devices
CCAVR軟件有ISP功能,能過調用STK500完成的,只要設置好參數,在ICCAVR中就可以給芯片編程了,還可以讓程序一編譯完就自動下載到芯片中,相當方便。在Tools->environment options->ISP里設定STK500.exe的路徑。— 用于調用STK500程序。在Tools->In system programming 里Programmer Interface中選中STK500。— 選擇STK500下載方式。在Tools->In system programming 里把Auto Program After Compile 的小勾選上。— 編譯后自動編程。在Tools->In system programming 中還有一些設置項,大家可以根據需要進行相關設置。下面的圖片是操作過程。
MPLAB C30用戶指南(英文)
HIGHLIGHTSThe information covered in this chapter is as follows:• About this Guide• Recommended Reading• Troubleshooting• The Microchip Web Site• Development Systems Customer Notification Service• Customer Support
Document LayoutThe document layout is as follows:• Chapter 1: Compiler Overview – describes MPLAB C30, development Tools andfeature set.• Chapter 2: Differences between MPLAB C30 and ANSI C – describes thedifferences between the C language supported by MPLAB C30 syntax and thestandard ANSI-89 C.• Chapter 3: Using MPLAB C30 – describes how to use the MPLAB C30 compilerfrom the command line.• Chapter 4: MPLAB C30 Runtime Environment – describes the MPLAB C30runtime model, including information on sections, initialization, memory models, thesoftware stack and much more.• Chapter 5: Data Types – describes MPLAB C30 integer, floating point and pointerdata types.• Chapter 6: Device Support Files – describes the MPLAB C30 header and registerdefinition files, as well as how to use with SFR’s.• Chapter 7: Interrupts – describes how to use interrupts.• Chapter 8: Mixing Assembly Language and C Modules – provides guidelines tousing MPLAB C30 with MPLAB ASM30 assembly language modules.
FeaturesThe following standard features are provided.• Choice of RTOS scheduling policy1. Pre-emptive:Always runs the highest available task. Tasks of identical priorityshare CPU time (fully pre-emptive with round robin time slicing).2. Cooperative:Context switches only occur if a task blocks, or explicitly callstaskYIELD().• Co-routines (light weight tasks that utilise very little RAM).• Message queues• Semaphores [via macros]• Trace visualisation ability (requires more RAM)• Majority of source code common to all supported development Tools• Wide range of ports and examples
文章提出了一種精簡指令集8 位單片機中, 算術邏輯單元的工作原理。在此基礎上, 對比傳統PIC 方案、以及在ALU 內部再次采用流水線作業的332 方案、44 方案, 并用Synopsys 綜合工具實現了它們。綜合及仿真結果表明, 根據該單片機系統要求, 44 方案速度最高, 比332 方案可提高43.9%, 而面積僅比最小的332 方案增加1.6%。在分析性能差異的根本原因之后, 闡明了該方案的優越性。關鍵詞: 單片機, 精簡指令集, 算術邏輯單元, 流水線
Abstract: Work principle for ALU in an 8_bit RISC Singlechip microcomputer is described. The traditional PIC scheme, 332 Pipeline scheme and 44 Pipeline scheme are compared on the base of the principle, which are implemented using Synopsys design Tools. Results from synthesis and simulation shows that 44 scheme operates the fast, which is 43.9% faster and only 1.6% larger than 332 scheme. The essential reason why the performance is so different is analyzed.Then the advantage of 44 scheme is clarified.Key words: Singlechip, Microcomputer, RISC, ALU, Pipeline
winCE msdn講座 XP Embedded Now and the future
Windows XP Embedded Developmentand Deployment Model OverviewWindows XP Embedded Component ModelWindows XP Embedded Studio Tools
Microsoft WindowsXP Embedded Product Highlights
Componentized version of Windows XP Professional~ 12,000 components and updates as of Service Pack 2Flexible localizationSame binaries and API as Windows XP ProfessionalHotfixes and service packsEmbedded Enabling FeaturesRuns on standard PC hardwareSupports boot on hard drives, compact flash, DiskOnChipand read-only mediaSupport for remote install and remote bootHeadless device and remote management supportIntegration with Microsoft management Tools
The field of microelectromechanical systems (MEMS), particularly micromachinedmechanical transducers, has been expanding over recent years, and the productioncosts of these devices continue to fall. Using materials, fabrication processes, anddesign Tools originally developed for the microelectronic circuits industry, newtypes of microengineered device are evolving all the time—many offering numerousadvantages over their traditional counterparts. The electrical properties of siliconhave been well understood for many years, but it is the mechanical properties thathave been exploited in many examples of MEMS. This book may seem slightlyunusual in that it has four editors. However, since we all work together in this fieldwithin the School of Electronics and Computer Science at the University of Southampton,it seemed natural to work together on a project like this. MEMS are nowappearing as part of the syllabus for both undergraduate and postgraduate coursesat many universities, and we hope that this book will complement the teaching thatis taking place in this area.