為了改變目前電網(wǎng)現(xiàn)場作業(yè)管理的變電巡檢、變電檢修試驗、輸電線路巡檢檢修等管理系統(tǒng)各自獨(dú)立運(yùn)行,信息不能共享,功能、效率受限,建設(shè)和維護(hù)成本高的現(xiàn)狀,提出了采用B/S+C/S構(gòu)架模式,將各現(xiàn)場作業(yè)管理模塊和生產(chǎn)MIS(管理系統(tǒng))集成為一體的現(xiàn)場作業(yè)管理系統(tǒng)的設(shè)計方案,做到各子系統(tǒng)和生產(chǎn)MIS軟硬資源共享,做到同一數(shù)據(jù)唯一入口、一處錄入多處使用。各子系統(tǒng)設(shè)備人員等基礎(chǔ)信息來源于生產(chǎn)管理系統(tǒng),各子系統(tǒng)又是生產(chǎn)管理系統(tǒng)的作業(yè)數(shù)據(jù)、缺陷信息的重要來源。經(jīng)過研究試用成功和推廣應(yīng)用,目前該系統(tǒng)已在江西電網(wǎng)220 kV及以上變電站全面應(yīng)用。
Abstract:
In order to improve the status that the substation field inspection system, substation equipments maintenance and testing system, power-line inspection and maintenance system are running independent with each other. They can?蒺t share the resource information which accordingly constrains their functions and efficiency, and their construction and maintenance costs are high. This paper introduces a field standardized work management system based on B/S+C/S mode, integrating all field work management systems based on MIS and share the equipments and employee?蒺s data of MIS,the field work data of the sub systems are the source information of MIS, by which the same single data resouce with one-time input can be utilized in multiple places. After the research and testing, this system is triumphantly using in all 220kV and above substations in Jiangxi grid.
When a system designer specifies a nonisolated dc/dc powermodule, considering the needed input voltage range isequally as important as considering the required performanceattributes and features. Generally, nonisolated moduleshave either a narrow or a wide input voltage range. Narrowinputmodules typically have a nominal input voltage of3.3, 5, or 12 V. For systems that operate from a tightlyregulated input bus—such as those that do not use batterybackup—a narrow-input module is often adequate sincethe input remains fairly stable.Offering greater flexibility, wide-input modules operatewithin a range of 7 to 36 V, which includes the popular12- or 24-V industrial bus. This enables a single module tobe used for generating multiple voltages. These modulesare ideal for industrial controls, HVAC systems, vehicles,medical instrumentation, and other applications that usea loosely regulated distribution bus. In addition, systemspowered by a rectifier/battery charger with lead-acidbattery backup almost always require wide-input modules.System designers who choose power supplies may wantto take a close look at the latest generation of wide-inputdc/dc modules.
當(dāng)今電子系統(tǒng)如高端處理器及記憶體,對電源的需求是趨向更低電壓、更高電流的應(yīng)用。同時、對負(fù)載的反應(yīng)速度也要提高。因此功率系統(tǒng)工程師要面對的挑戰(zhàn),是要設(shè)計出符合系統(tǒng)要求的細(xì)小、價廉但高效率的電源系統(tǒng)。而這些要求都不是傳統(tǒng)功率架構(gòu)能夠完全滿足的。Vicor提出的分比功率架構(gòu)(Factorized Power Architecture FPA)以及一系列的整合功率元件,可提供革命性的功率轉(zhuǎn)換方案,應(yīng)付以上提及的各項挑戰(zhàn)。這些功率元件稱為V•I晶片。
為解決電致變色器件的顏色變化受外界環(huán)境顏色控制的問題,設(shè)計了一種基于單片機(jī)的便攜式顏色自適應(yīng)識別電路。與傳統(tǒng)顏色識別電路相比較,該電路利用數(shù)字式的顏色傳感器來獲取外界環(huán)境顏色,產(chǎn)生的數(shù)字顏色信號易于單片機(jī)進(jìn)行處理。在電路中,下位機(jī)部分主要負(fù)責(zé)獲取電致變色器件變色參數(shù)及控制電致變色器件的顏色變化;而上位機(jī)部分主要負(fù)責(zé)把下位機(jī)獲取的電致變色器件變色參數(shù)進(jìn)行電壓到顏色的曲線擬合,并通過藍(lán)牙通信把擬合曲線參數(shù)傳遞給下位機(jī)。結(jié)果表明,該電路能自動根據(jù)環(huán)境顏色提供-4~4 V范圍步進(jìn)為0.1 V的電壓來驅(qū)動電致變色器件的顏色顯示,與傳統(tǒng)的顏色識別電路設(shè)計相比,識別的精度和速度都得到了明顯改善。
Abstract:
In this paper, a portable adaptive circuit for color identification(PACCI) based on MCU was designed. Compared to the traditional color identification circuit, the PACCI adopts digital sensor to detect the color data from external environment and further generate digital color data, which can be processed easily by MCU. In PACCI, the slave is mainly responsible for detecting the color parameters of the corresponding elcreochromic device and further driving it. For the master, which is mainly responsible for the color curve fitting based on the parameters of the electrochromic device, and transmits the fitting parameters to the slave through the bluetooth device. The results show that the PACCI can provide the basis voltage range from -4V to 4V automatically based on the colors of external environment with step as 0.1V to drive the corresponding electrochromic device. Compared to the traditional color recognition circuit, the recognition accuracy and speed of PACCI have been improved significantly.
為了使音頻信號分析儀小巧可靠,成本低廉,設(shè)計了以2片MSP430F1611單片機(jī)為核心的系統(tǒng)。該系統(tǒng)將音頻信號送入八階巴特沃茲低通濾波器,對信號進(jìn)行限幅放大、衰減、電平位移、緩沖,并利用一單片機(jī)負(fù)責(zé)對前級處理后的模擬信號進(jìn)行采樣,將采集得到的音頻信號進(jìn)行4 096點(diǎn)基2的FFT計算,并對信號加窗函數(shù)提高分辨率,另一單片機(jī)負(fù)責(zé)對信號的分析及控制顯示設(shè)備。此設(shè)計精確的測量了音頻信號的功率譜、周期性、失真度指標(biāo),達(dá)到較高的頻率分辨率,并能將測量結(jié)果通過紅外遙控器顯示在液晶屏上。
Abstract:
o make the audio signal analyzer cheaper, smaller and more reliable, this system sends the audio signal to the eight-order butterworth filter, and then amplifies, attenuates, buffers it in a limiting range, transfers the voltage level of the signal before utilizing two MSP430F1611 MCU to realize the audio analysis. One is charged for sampling and dealing with the processed audio signal collected by the 4096 point radix-2 FFT calculation and imposes the window function to improve the frequency resolution. The other one controls the display and realizes the spectrum, periodicity, power distortion analysis in high resolution which is displayed in the LCD screen through the infrared remote control.
為了有效地提升鉛酸蓄電池的使用壽命,同時實(shí)現(xiàn)對充電過程的監(jiān)控,設(shè)計出一種用單片機(jī)控制的36 V鉛酸蓄電池充電電源。本電路采用反激式拓?fù)?,連續(xù)電流工作模式,電源管理IC設(shè)計在電源的副邊,由ELAN公司的EM78P258N單片機(jī)模擬,是用可編程器件模擬電源管理IC,實(shí)現(xiàn)智能電源低成本化的一次成功嘗試,通過對單片機(jī)的軟件設(shè)計實(shí)現(xiàn)了充電電源的狀態(tài)顯示、充電時間控制、報警、過溫保護(hù)、過壓保護(hù)、過流保護(hù)等功能。本充電器真正的實(shí)現(xiàn)了鉛酸蓄電池的三段式充電過程,其最高輸出功率可達(dá)90 W,效率約85%,成本不到20元,具有很高的市場競爭力。
Abstract: In order to extend the life of lead-acid battery efficiently and supervise the charging process meanwhile, a 36V lead-acid battery charge powe supply controlled by microcontroller is designed. The charger is flyback switching power supply and works in CCM mode. A EM78P258N microcontroller made by ELAN microelectronics corporation is used as power management IC which is designed at the secondary circuit. The project is a successful attempt to low-cost intelligent power used microcontroller simulating power management IC. The charger also has the functions of the status reveal, charge time control, alarming, thermal protect, current limit and overvoltage protect by the software design. The circuit actually implements the three-step charge process, whose power is up to 90W and whose efficiency can get 85%. The net cost of this charger is less than 20 RMB, so that the charger is of powerful market competitiveness.
對于傳統(tǒng)的跑步機(jī)無法聯(lián)機(jī)組網(wǎng),保存歷史數(shù)據(jù),實(shí)時調(diào)試等問題,介紹了一個由多臺跑步機(jī)通過RS-232串行總線與上位機(jī)相連組成的跑步機(jī)聯(lián)網(wǎng)系統(tǒng)。系統(tǒng)采用W77E58作為下位機(jī)核心控制器件,它具有雙串行通訊端口,其中一個串口用于與變頻器通訊,另一個串口則與上位機(jī)相連,構(gòu)成跑步機(jī)網(wǎng)絡(luò)。
Abstract:
The traditional running machine can not be connected to a network, saving historical data, real time debug etc.In this paper,a new network system which is composed of running machines connected by a RS-232 communication bus is introduced.In the system,W77E58 is used as a core control unit.W77E58 has two serial ports,one is connected to the inverter and the other is connected to the PC. Thus a network appears.
為了解決磁放大器性能測試過程中,需要對其供給不同數(shù)值恒定電流的問題,設(shè)計了一種基于DAC7512和單片機(jī)的數(shù)控恒流源系統(tǒng)。該系統(tǒng)采用AT89C51作為主控器件,將計算機(jī)發(fā)送的電流控制字命令轉(zhuǎn)換為D/A轉(zhuǎn)換器控制字,通過模擬SPI通信接口,寫D/A控制字到DAC7512,從而控制其輸出相應(yīng)數(shù)字電壓值,經(jīng)差動縮放電路、電壓/電路變換電路和功率驅(qū)動電路,最后輸出恒定電流。實(shí)驗結(jié)果表明,恒流源輸出電流調(diào)節(jié)范圍為-45~+45 mA、精度為±0.1 mA,分辨率達(dá)0.024 4 mA,具有應(yīng)用靈活,外圍電路簡單,可靠性高的特點(diǎn)。該數(shù)控直流恒流源也可為相關(guān)產(chǎn)品的測試系統(tǒng)研發(fā)提供參考。
Abstract:
In order to solve the need to supply different values constant current for the magnetic amplifier in testing process, numerical control constant current source system was designed based on DAC7512 chip and microcontroller technology. The system used the AT89C51 as the main chip, which can convert the current control word from computer into to D/A control words. And the system wrote D/A control word into the DAC7512 chip to control the output voltage value by the SPI communication interface, which can output corresponding constant current figures by scaling circuit, the V/I converter and power drive circuit. Experimental results show that the current source output current adjustment range is -45~+45mA, accuracy is ± 0.1mA, and resolution ratio is 0.024 4mA
Information in this document is subject to change without notice and does notrepresent a commitment on the part of the manufacturer. The software describedin this document is furnished under license agreement or nondisclosureagreement and may be used or copied only in accordance with the terms of theagreement. It is against the law to copy the software on any medium except asspecifically allowed in the license or nondisclosure agreement. The purchasermay make one copy of the software for backup purposes. No part of this manualmay be reproduced or transmitted in any form or by any means, electronic ormechanical, including photocopying, recording, or information storage andretrieval systems, for any purpose other than for the purchaser’s personal use,without written permission.
The bootloader is stored in the internal boot ROM memory (system memory) of STM32devices. It is programmed by ST during production. Its main task is to download theapplication program to the internal Flash memory through one of the available serialperipherals (USART, CAN, USB, etc.). A communication protocol is defined for each serialinterface, with a compatible command set and sequences