亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

VLS-book4-<b>script</b>

  • NTC計算公式 溫度公式B值計算法

    描述了NTC使用B值計算出實際溫度與輸出的電壓之間的關系。

    標簽: ntc計算

    上傳時間: 2022-06-15

    上傳用戶:

  • Quectel Wireless Solutions BC20-TE-B 原理圖 V1.2

    BC20-TE-B NB-Iot 評估板評估板原廠原理圖V1.2。完整對應實物裝置。

    標簽: BC20 NB-Iot Quectel

    上傳時間: 2022-06-17

    上傳用戶:

  • ASR M08-B資料

    ASR M08-B設置軟件 V3.2  arduino 2560+ASRM08-B測試程序  arduino UNO+ASRM08-B測試程序語音控制臺燈電路圖及C51源碼(不帶校驗碼) 繼電器模塊設置。   ASR M08-B是一款語音識別模塊。首先對模塊添加一些關鍵字,對著該模塊說出關鍵字,串口會返回三位的數,如果是返回特定的三位數字,還會引起ASR M08-B的相關引腳電平的變化。【測試】①打開“ASR M08-B設置軟件 V3.2.exe”。②選擇“串口號”、“打開串口”、點選“十六進制顯示”。③將USB轉串口模塊連接到語音識別模塊上。接線方法如下:語音模塊TXD --> USB模塊RXD語音模塊RXD --> USB模塊TXD語音模塊GND --> USB模塊GND語音模塊3V3 --> USB模塊3V3(此端為3.3V電源供電端。)④將模塊的開關撥到“A”端,最好再按一次上面的大按鈕(按一次即可,為了確保模塊工作在正確的模式)。⑤對著模塊說“開燈”、“關燈”模塊會返回“0B”、“0A”,表示正常(注意:0B對應返回值010,0B對應返回值010,返回是16進制顯示的嘛,設置的時候是10進制設置的)。

    標簽: ASR M08-B

    上傳時間: 2022-07-06

    上傳用戶:aben

  • Footprint Maker 0.08 FPM

    是否要先打開ALLEGRO? 不需要(當然你的機器須有CADENCE系統)。生成完封裝后在你的輸出目錄下就會有幾千個器件(全部生成的話),默認輸出目錄為c:\MySym\. Level里面的Minimum, Nominal, Maximum 是什么意思? 對應ipc7351A的ABC封裝嗎? 是的 能否將MOST, NOMINAL, LEAST三種有差別的封裝在命名上也體現出差別? NOMINAL 的名稱最后沒有后綴,MOST的后綴自動添加“M”,LEAST的后綴自動添加“L”,你看看生成的庫名稱就知道了。(直插件以及特別的器件,如BGA等是沒有MOST和LEAST級別的,對這類器件只有NOMINAL) IC焊盤用長方形好像比用橢圓形的好,能不能生成長方形的? 嗯。。。。基本上應該是非直角的焊盤比矩形的焊盤好,我記不得是AMD還是NS還是AD公司專門有篇文檔討論了這個問題,如果沒有記錯的話至少有以下好處:信號質量好、更省空間(特別是緊密設計中)、更省錫量。我過去有一篇帖子有一個倒角焊盤的SKILL,用于晶振電路和高速器件(如DDR的濾波電容),原因是對寬度比較大的矩形用橢圓焊盤也不合適,這種情況下用自定義的矩形倒角焊盤就比較好了---你可以從網上另外一個DDR設計的例子中看到。 當然,我已經在程序中添加了一選擇項,對一些矩形焊盤可以選擇倒角方式. 剛才試了一下,感覺器件的命名的規范性不是太好,另好像不能生成器件的DEVICE文件,我沒RUN完。。。 這個程序的命名方法基本參照IPC-7351,每個人都有自己的命名嗜好,仍是不好統一的;我是比較懶的啦,所以就盡量靠近IPC-7351了。 至于DEVICE,的選項已經添加 (這就是批量程序的好處,代碼中加一行,重新生產的上千上萬個封裝就都有新東西了)。 你的庫都是"-"的,請問用過ALLEGRO的兄弟,你們的FOOTPRINT認"-"嗎?反正我的ALLEGRO只認"_"(下劃線) 用“-”應該沒有問題的,焊盤的命名我用的是"_"(這個一直沒改動過)。 部分絲印畫在焊盤上了。 絲印的問題我早已知道,只是盡量避免開(我有個可配置的SilkGap變量),不過工作量比較大,有些已經改過,有些還沒有;另外我沒有特別費功夫在絲印上的另一個原因是,我通常最后用AUTO-SILK的來合并相關的層,這樣既方便快捷也統一各個器件的絲印間距,用AUTO-SILK的話絲印線會自動避開SOLDER-MASK的。 點擊allegro后命令行出現E- Can't change to directory: Files\FPM,什么原因? 我想你一定是將FPM安裝在一個含空格的目錄里面了,比如C:\Program Files\等等之類,在自定義安裝目錄的時候該目錄名不能含有空格,且存放生成的封裝的目錄名也不能含有空格。你如果用默認安裝的話應該是不會有問題的, 默認FPM安裝在C:\FPM,默認存放封裝的目錄為C:\MYSYM 0.04版用spb15.51生成時.allegro會死機.以前版本的Allegro封裝生成器用spb15.51生成時沒有死機現象 我在生成MELF類封裝的時候有過一次死機現象,估計是文件操作錯誤導致ALLEGRO死機,原因是我沒有找到在skill里面直接生成SHAPE焊盤的方法(FLASH和常規焊盤沒問題), 查了下資料也沒有找到解決方法,所以只得在外部調用SCRIPT來將就一下了。(下次我再查查看),用SCRIPT的話文件訪問比較頻繁(幸好目前MELF類的器件不多). 解決辦法: 1、對MELF類器件單獨選擇生成,其它的應該可以一次生成。 2、試試最新的版本(當前0.05) 請說明運行在哪類器件的時候ALLEGRO出錯,如果不是在MELF附近的話,請告知,謝謝。 用FPM0.04生成的封裝好像文件都比較大,比如CAPC、RES等器件,都是300多K,而自己建的或采用PCB Libraries Eval生成的封裝一般才幾十K到100K左右,不知封裝是不是包含了更多的信息? 我的每個封裝文件包含了幾個文字層(REF,VAL,TOL,DEV,PARTNUMBER等),SILK和ASSEM也是分開的,BOND層和高度信息,還有些定位線(在DISP層),可能這些越來越豐富的信息加大了生成文件的尺寸.你如果想看有什么內容的話,打開所有層就看見了(或REPORT) 非常感謝 LiWenHui 發現的BUG, 已經找到原因,是下面這行: axlDBChangeDesignExtents( '((-1000 -1000) (1000 1000))) 有尺寸空間開得太大,后又沒有壓縮的原因,現在生成的封裝也只有幾十K了,0.05版已經修復這個BUG了。 Allegro封裝生成器0.04生成do-27封裝不正確,生成封裝的焊盤的位號為a,c.應該是A,B或者1,2才對. 呵呵,DIODE通常管腳名為AC(A = anode, C = cathode) 也有用AK 或 12的, 極少見AB。 除了DIODE和極個別插件以及BGA外,焊盤名字以數字為主, 下次我給DIODE一個選擇項,可以選擇AC 或 12 或 AK, 至于TRANSISTER我就不去區分BCE/CBE/ECB/EBC/GDS/GSD/DSG/DGS/SGD/SDG等了,這樣會沒完沒了的,我將對TRANSISTER強制統一以數字編號了,如果用家非要改變,只得在生成庫后手工修改。

    標簽: Footprint Maker 0.08 FPM skill

    上傳時間: 2018-01-10

    上傳用戶:digitzing

  • 基于ARM的網絡視頻監控系統設計與實現.rar

    近年來,隨著多媒體技術、計算機網絡與通信技術的的快速發展,傳統的監控系統也不斷向著新的發展方向進行著不斷的更新與發展。進而隨著嵌入式技術的出現以及人們對降低監控系統成本和提高可靠性的迫切需求,基于嵌入式系統的網絡視頻監控系統將成為新的研發熱點。 本文的目的是把嵌入式技術與計算機網絡技術相結合,構造一個性能穩定且具有較強處理能力的數字化遠程視頻監控系統。該監控系統以嵌入式Linux系統平臺作為服務器端,服務器程序在其上以后臺方式運行,等待監控系統環境中的客戶機使用瀏覽器向其發送訪問請求,實現在局域網乃至Internet網上對攝像頭的遠程控制。 文中把系統設計分為三大部分:系統硬件設計、嵌入式Linux在硬件平臺的實現和系統軟件設計。硬件設計部分首先提出了整個硬件系統的實現方案,接著詳細介紹了S3C2410處理器與存儲器、以太網控制器芯片以及USB和串口的接口電路設計;第二部分詳細敘述了嵌入式Linux在本系統硬件平臺的移植實現及應用程序的開發特點,重點講述了本系統平臺上Linux的引導加載程序Bootloader的設計過程;系統軟件部分首先介紹了USB接口攝像頭驅動在嵌入式Linux下的實現,重點講述了Video4Linux下視頻采集的實現,接著論述了如何實現圖像的JPEG壓縮,最后針對基于B/S模式的網絡通信系統結構,詳細闡述了網絡通信的具體實現過程和方法。 最后在辦公室局域網通過對系統測試,顯示了系統運行結果,實現了利用局域網或Internet網對遠程環境進行監控的功能。

    標簽: ARM 網絡視頻監控 系統設計

    上傳時間: 2013-07-04

    上傳用戶:lgnf

  • 永磁同步發電機的電磁場分析.rar

    永磁同步發電機由于一系列高效節能的優點,在工農業生產、航空航天、國防和日常生活中得到廣泛應用,并且受到許多學者的關注,其研究領域主要涉及永磁同步發電機的設計、精確性能分析、控制等方面。 本課題作為國家自然科學基金項目《無刷無勵磁機諧波勵磁的混合勵磁永磁電機的研究》的課題,主要研究永磁電機的電磁場空載和負載計算,求出永磁電機的電壓波形和電壓調整率,為分段式轉子的混合勵磁永磁電機的研究奠定基礎,主要做了以下工作: 首先介紹了永磁同步發電機的基本原理,包括永磁同步發電機的結構形式和永磁同步發電機的運行性能,采用傳統解析理論給出了電壓調整率的計算方法及外特性的計算模型;然后用有限元ANSYS對永磁同步發電機樣機進行實體建模,經過定義分配材料、劃分網格、加邊界條件和載荷、求解計算等,得到矢量磁位Az、磁場強度H、磁感應強度B等結果,直觀地看出電機內部的磁場分布情況。 其次根據電磁場計算結果,應用齒磁通法對其進行后處理。該方法求解轉子在一個齒距內不同位置處的磁場,以定子齒的磁通為計算單位,根據繞組與齒的匝鏈關系,計算出磁鏈隨時間的變化,進而得到永磁同步發電機空、負載時電壓大小及波形。通過計算結果寫實驗結果對比,驗證了齒磁通法的正確性,為計算永磁同步發電機各種性能特性提供有力工具。 最后,基于齒磁通法對永磁同步發電機的外特性進行了深入研究,定量分析了結構參數對外特性的影響規律,提出了有效降低電壓調整率的方法的是:增加氣隙長度g的同時,適當增加永磁體的磁化方向的長度hm;此外,要盡量的減少每相串聯匝數N和增大導線面積以減小阻抗參數。通過改變電機的結構參數,對其電磁場進行計算,找到永磁電機電壓調整率的變化規律,為加電勵磁的混合勵磁永磁電機做準備,達到穩定輸出電壓的目的。

    標簽: 永磁同步 發電機 磁場分析

    上傳時間: 2013-04-24

    上傳用戶:15853744528

  • 基于自適應時頻分析方法的心音信號分析研究.rar

    心音信號是人體最重要的生理信號之一,包含心臟各個部分如心房、心室、大血管、心血管及各個瓣膜功能狀態的大量生理病理信息。心音信號分析與識別是了解心臟和血管狀態的一種不可缺少的手段。本文針對目前該研究領域中存在的分析方法問題和分類識別技術難點展開了深入的研究,內容涉及心音構成的分析、心音信號特征向量的提取、正常心音信號(NM)和房顫(AF)、主動脈回流(AR)、主動脈狹窄(AS)、二尖瓣回流(MR)4種心臟雜音信號的分類識別。本文的工作內容包括以下5個方面: a)心音信號采集與預處理。本文采用自行研制的帶有錄音機功能的聽診器實現對心音信號的采集。通過對心音信號噪聲分析,選用小波降噪作為心音信號的濾波方法。根據實驗分析,選擇Donoho閾值函數結合多級閾值的方法作為心音信號預處理方案。 b)心音信號時頻分析方法。文中采用5種時頻分析方法分別對心音信號進行了時頻譜特性分析,結果表明:不同的時頻分析方法與待分析心音信號的特性有密切關系,即需要在小的交叉項干擾與高的時頻分辨率之間作綜合的考慮。鑒于此,本文提出了一種自適應錐形核時頻(ATF)分析方法,通過實驗驗證該分布能較好地反映心音信號的時頻結構,其性能優于一般錐形核分布(CKD)以及Choi-Williams分布(CWD)、譜圖(SPEC)等固定核時頻分析方法,從而選擇自應錐形核時頻分析方法進行心音信號分析。 c)心音信號特征向量提取。根據對3M Littmann() Stethoscopes[31]數據庫中標準心音信號的時頻分析結果,提取8組特征數據,通過Fihser降維處理方法提取出了實現分類可視化,且最易于分類的心音信號的2維特征向量,作為心音信號分類的特征向量。 d)心音信號分類方法。根據心音信號特征向量組成的散點圖,研究了支持向量機核函數、多分類支持向量機的選取方法,同時,基于分類的目的 性和可信性,本文提出以分類精度最大為判斷準則的核函數參數與松弛變量的優化方法,建立了心音信號分類的支持向量機模型,選取標準數據庫中NM、AF、AR、AS、MR每類心音信號的80組2維特征向量中每類60組數據作為支持向量機的學習樣本,對余下的每類20組數據進行測試,得到每類的分類精度(Ar)均為100%,同時對臨床上采集的與上述4種同類心臟雜音信號和正常心音信號中每類24個心動周期進行分類實測,分類精度分別為:NM、AF、MR的分類精度均為100%,而AR、AS均為95.83%,驗證了該方法的分類有效性。 e)心音信號分析與識別的軟件系統。本文以MATLAB語言的可視化功能實現了心音信號分析與識別的軟件運行平臺構建,可完成對心音信號的讀取、預處理,繪制時-頻、能量特性的三維圖及兩維等高線圖;同時,利用MATLAB與EXCEL的動態鏈接,實現對心音信號分析數據的存儲以及統計功能;最后,通過對心音信號2維特征向量的分析,實現心音信號的自動識別功能。 本文的研究特色主要體現在心音信號特征向量提取的方法以及多分類支持向量機模型的建立兩方面。 綜上所述,本文從理論與實踐兩方面對心音信號進行了深入的研究,主要是采用自適應錐形核時頻分析方法提取心音信號特征向量,根據心音信號特征向量組成的散點圖,建立心音信號分類的支持向量機模型,并對正常心音信號和4種心臟雜音信號進行了分類研究,取得了較為滿意的分類結果,但由于用于分類的心臟雜音信號種類及數據量尚不足,因此,今后的工作重點是采集更多種類的心臟雜音信號,進一步提高心音信號分類精度,使本文研究成果能最終應用于臨床心臟量化聽診。 關鍵詞:心音信號,小波降噪,非平穩信號,心臟雜音,信號處理,時頻分析,自適應,支持向量機

    標簽: 時頻 分析方法

    上傳時間: 2013-04-24

    上傳用戶:weixiao99

  • 永磁同步直線電機的矢量控制.rar

    本文分析了永磁同步直線電動機的運行機理與運行特性,并通過坐標變換,分別得出了電機在a—b—c,α—β、d—q坐標系下的數學模型。針對永磁同步直線電機模型的非線性與耦合特性,采用了次級磁場定向的矢量控制,并使id=0,不但解決了上述問題,還實現了最大推力電流比控制。為了獲得平穩的推力,采用了SVPWM控制,并對它算法實現進行了研究。 針對速度環采用傳統PID控制難以滿足高性能矢量控制系統,通過對傳統PID控制和模糊控制理論的研究,將兩者相結合,設計出能夠在線自整定的模糊PID控制器。將該控制器代替傳統的PID控制器應用于速度環,以提高系統的動靜態性能。 在以上分析的基礎上,設計了永磁同步直線電機矢量控制系統的軟、硬件。其中電流檢測采用了新穎的電流傳感器芯片IR2175,以解決溫漂問題;速度檢測采用了增量式光柵尺,設計了與DSP的接口電路,通過M/T法實現對電機的測速。最后在Matlab/Simlink下建立了電機及其矢量控制系統的仿真模型,并對分別采用傳統PID速度控制器和模糊PID速度控制器的系統進行仿真,結果表明采用模糊PID控制具有更好的動態響應性能,能有效的抑制暫態和穩態下的推力脈動,對于負載擾動具有較強的魯棒性。

    標簽: 永磁同步 直線電機 矢量控制

    上傳時間: 2013-07-04

    上傳用戶:13681659100

  • 射頻與微波功率放大器設計.rar

    本書主要闡述設計射頻與微波功率放大器所需的理論、方法、設計技巧,以及將分析計算與計算機輔助設計相結合的優化設計方法。這些方法提高了設計效率,縮短了設計周期。本書內容覆蓋非線性電路設計方法、非線性主動設備建模、阻抗匹配、功率合成器、阻抗變換器、定向耦合器、高效率的功率放大器設計、寬帶功率放大器及通信系統中的功率放大器設計。  本書適合從事射頻與微波動功率放大器設計的工程師、研究人員及高校相關專業的師生閱讀。 作者簡介 Andrei Grebennikov是M/A—COM TYCO電子部門首席理論設計工程師,他曾經任教于澳大利亞Linz大學、新加坡微電子學院、莫斯科通信和信息技術大學。他目前正在講授研究班課程,在該班上,本書作為國際微波年會論文集。 目錄 第1章 雙口網絡參數  1.1 傳統的網絡參數  1.2 散射參數  1.3 雙口網絡參數間轉換  1.4 雙口網絡的互相連接  1.5 實際的雙口電路   1.5.1 單元件網絡   1.5.2 π形和T形網絡  1.6 具有公共端口的三口網絡  1.7 傳輸線  參考文獻 第2章 非線性電路設計方法  2.1 頻域分析   2.1.1 三角恒等式法   2.1.2 分段線性近似法   2.1.3 貝塞爾函數法  2.2 時域分析  2.3 NewtOn.Raphscm算法  2.4 準線性法  2.5 諧波平衡法  參考文獻 第3章 非線性有源器件模型  3.1 功率MOSFET管   3.1.1 小信號等效電路   3.1.2 等效電路元件的確定   3.1.3 非線性I—V模型   3.1.4 非線性C.V模型   3.1.5 電荷守恒   3.1.6 柵一源電阻   3.1.7 溫度依賴性  3.2 GaAs MESFET和HEMT管   3.2.1 小信號等效電路   3.2.2 等效電路元件的確定   3.2.3 CIJrtice平方非線性模型   3.2.4 Curtice.Ettenberg立方非線性模型   3.2.5 Materka—Kacprzak非線性模型   3.2.6 Raytheon(Statz等)非線性模型   3.2.7 rrriQuint非線性模型   3.2.8 Chalmers(Angek)v)非線性模型   3.2.9 IAF(Bemth)非線性模型   3.2.10 模型選擇  3.3 BJT和HBT汀管   3.3.1 小信號等效電路   3.3.2 等效電路中元件的確定   3.3.3 本征z形電路與T形電路拓撲之間的等效互換   3.3.4 非線性雙極器件模型  參考文獻 第4章 阻抗匹配  4.1 主要原理  4.2 Smith圓圖  4.3 集中參數的匹配   4.3.1 雙極UHF功率放大器   4.3.2 M0SFET VHF高功率放大器  4.4 使用傳輸線匹配   4.4.1 窄帶功率放大器設計   4.4.2 寬帶高功率放大器設計  4.5 傳輸線類型   4.5.1 同軸線   4.5.2 帶狀線   4.5.3 微帶線   4.5.4 槽線   4.5.5 共面波導  參考文獻 第5章 功率合成器、阻抗變換器和定向耦合器  5.1 基本特性  5.2 三口網絡  5.3 四口網絡  5.4 同軸電纜變換器和合成器  5.5 wilkinson功率分配器  5.6 微波混合橋  5.7 耦合線定向耦合器  參考文獻 第6章 功率放大器設計基礎  6.1 主要特性  6.2 增益和穩定性  6.3 穩定電路技術   6.3.1 BJT潛在不穩定的頻域   6.3.2 MOSFET潛在不穩定的頻域   6.3.3 一些穩定電路的例子  6.4 線性度  6.5 基本的工作類別:A、AB、B和C類  6.6 直流偏置  6.7 推挽放大器  6.8 RF和微波功率放大器的實際外形  參考文獻 第7章 高效率功率放大器設計  7.1 B類過激勵  7.2 F類電路設計  7.3 逆F類  7.4 具有并聯電容的E類  7.5 具有并聯電路的E類  7.6 具有傳輸線的E類  7.7 寬帶E類電路設計  7.8 實際的高效率RF和微波功率放大器  參考文獻 第8章 寬帶功率放大器  8.1 Bode—Fan0準則  8.2 具有集中元件的匹配網絡  8.3 使用混合集中和分布元件的匹配網絡  8.4 具有傳輸線的匹配網絡    8.5 有耗匹配網絡  8.6 實際設計一瞥  參考文獻 第9章 通信系統中的功率放大器設計  9.1 Kahn包絡分離和恢復技術  9.2 包絡跟蹤  9.3 異相功率放大器  9.4 Doherty功率放大器方案  9.5 開關模式和雙途徑功率放大器  9.6 前饋線性化技術  9.7 預失真線性化技術  9.8 手持機應用的單片cMOS和HBT功率放大器  參考文獻

    標簽: 射頻 微波功率 放大器設計

    上傳時間: 2013-04-24

    上傳用戶:W51631

  • 基于嵌入式的遠程圖像采集傳輸系統的研究.rar

    圖像的采集和傳輸是實時監控、遠程控制、智能小區等諸多領域的關鍵技術。基于傳統:PC的圖像采集已成為現實。隨著信息技術的迅速發展,嵌入式系統的研究開發成為了后PC時代的一個熱點,它被廣泛應用于工業現場、信息家電等各行各業。同時,圖像的遠程采集傳輸也朝著專業化、多樣化和低成本的方向發展。利用嵌入式技術來實現圖像的遠程采集傳輸正順應了時代發展,有較大的實用價值。 本文主要研究了基于嵌入式的遠程圖像采集傳輸系統。嵌入式終端采用$3C2410為核心的目標板為硬件平臺,采用嵌入式Linux為系統平臺。系統通過連接在嵌入式終端的USB攝像頭完成靜態圖像數據采集,并進行圖像壓縮處理。在圖像傳輸方面,論文設計了兩種模式:一種是通過Intemet傳輸的、基于B/S模式的傳輸方式。在該模式下,遠端客戶機通過瀏覽器訪問架設在終端里的嵌入式服務器而獲得圖像信息。另一種是基于GPRS網絡實現遠程無線圖像傳輸。終端將采集到的圖像數據通過GPRS網絡發送到擁有固定Ip的監控服務器上來完成圖像遠程傳輸。 本文首先介紹了圖像采集傳輸和嵌入式方面的相關內容,并介紹了本論文所采用的開發平臺。為了順利開發接著構建了開發環境,這里包括U-boot的移植、Linux系統的內核編譯和移植、設備驅動模塊的加載以及交叉編譯環境的建立。在此基礎上,利用Vide04Linux的接口函數,用C語言實現了圖像原始數據的采集程序,并利用JPEG算法了實現圖像壓縮。在基于B/S模式的傳輸方式中,首先利用Boa架設了嵌入式服務器,然后用C語言完成CGI腳本,該腳本將圖像嵌入網頁并實時更新以實現網頁的動態輸出。在基于GPRS實現遠程無線圖像傳輸方式中,論文詳細分析了系統通訊數據流的特征,提出了采用辨識特征字符、數據打包等策略以實現GPRS的網絡連接和數據通訊,并且在此基礎上用C語言編程實現。同時,在PC(Linux)上用Socket編程實現了監控服務器軟件,該軟件用以接收圖像數據和控制嵌入式終端的系統狀態。最后,論文分析比較了兩種傳輸方式的區別和優缺點。試驗證明,采用兩種方式都能成功實現圖像的遠程采集傳輸,并且試驗效果較好。

    標簽: 嵌入式 遠程圖像

    上傳時間: 2013-05-17

    上傳用戶:squershop

主站蜘蛛池模板: 江都市| 鹿邑县| 儋州市| 东台市| 库车县| 宜都市| 焦作市| 武威市| 靖宇县| 鲁山县| 班戈县| 康乐县| 南陵县| 彰化县| 营山县| 和政县| 古蔺县| 安岳县| 确山县| 东乡| 凤城市| 多伦县| 临潭县| 西畴县| 克什克腾旗| 格尔木市| 睢宁县| 府谷县| 磐安县| 兴安盟| 溧阳市| 日土县| 潜江市| 巨鹿县| 孝昌县| 英吉沙县| 文化| 新余市| 日照市| 黄冈市| 澄迈县|