亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

VR眼鏡

  • FPGA輸出數(shù)據(jù)的時頻域分析GUI界面

    FPGA輸出數(shù)據(jù)的時頻域分析GUI界面,\r\n可觀察信號的時域頻域波形,星座圖眼圖等特性

    標(biāo)簽: FPGA GUI 輸出數(shù)據(jù) 頻域分析

    上傳時間: 2013-08-27

    上傳用戶:ommshaggar

  • 鋁電解電容器:詳細(xì)介紹原理,應(yīng)用,使用技巧

    鋁電解電容器:詳細(xì)介紹原理,應(yīng)用,使用技巧 電容器(capacitor)在音響組件中被廣泛運用,濾波、反交連、高頻補(bǔ)償、直流回授...隨處可見。但若依功能及制造材料、制造方法細(xì)分,那可不是一朝一夕能說得明白。所以縮小范圍,本文只談電解電容,而且只談電源平滑濾波用的鋁質(zhì)電解電容。         每臺音響機(jī)器都要吃電源─除了被動式前級,既然需要供電,那就少不了「濾波」這個動作。不要和我爭,采用電池供電當(dāng)然無必要電源平滑濾波。但電池充電電路也有整流及濾波,故濾波電容器還是會存在。        我們現(xiàn)在習(xí)用的濾波電容,正式的名稱應(yīng)是:鋁箔干式電解電容器。就我的觀察,除加拿大Sonic Frontiers真空管前級,曾在高壓穩(wěn)壓線路中選用PP塑料電容做濾波外,其它機(jī)種一概都是采用鋁箔干式電解電容;因此網(wǎng)友有必要對它多做了解。         面對電源穩(wěn)壓線路中擔(dān)任電源平滑濾波的電容器,你首先想到的會是什幺?─容量?耐壓?電容器的封裝外皮上一定有容量標(biāo)示,那是指靜電容量;也一定有耐壓標(biāo)示,那是指工作電壓或額定電壓。         工作電壓(working voltage)簡稱WV,為絕對安全值;若是surge voltage(簡稱SV或Vs),就是涌浪電壓或崩潰電壓;,超過這個電壓值就保證此電容會被浪淹死─小心電容會爆!根據(jù)國際IEC 384-4規(guī)定,低于315V時,Vs=1.15×Vr,高于315V時,Vs=1.1×Vr。Vs是涌浪電壓,Vr是額定電壓(rated voltage)。

    標(biāo)簽: 鋁電解電容器 詳細(xì)介紹 使用技巧

    上傳時間: 2013-12-23

    上傳用戶:gundan

  • 高速PCB基礎(chǔ)理論及內(nèi)存仿真技術(shù)(經(jīng)典推薦)

    第一部分 信號完整性知識基礎(chǔ).................................................................................5第一章 高速數(shù)字電路概述.....................................................................................51.1 何為高速電路...............................................................................................51.2 高速帶來的問題及設(shè)計流程剖析...............................................................61.3 相關(guān)的一些基本概念...................................................................................8第二章 傳輸線理論...............................................................................................122.1 分布式系統(tǒng)和集總電路.............................................................................122.2 傳輸線的RLCG 模型和電報方程...............................................................132.3 傳輸線的特征阻抗.....................................................................................142.3.1 特性阻抗的本質(zhì).................................................................................142.3.2 特征阻抗相關(guān)計算.............................................................................152.3.3 特性阻抗對信號完整性的影響.........................................................172.4 傳輸線電報方程及推導(dǎo).............................................................................182.5 趨膚效應(yīng)和集束效應(yīng).................................................................................232.6 信號的反射.................................................................................................252.6.1 反射機(jī)理和電報方程.........................................................................252.6.2 反射導(dǎo)致信號的失真問題.................................................................302.6.2.1 過沖和下沖.....................................................................................302.6.2.2 振蕩:.............................................................................................312.6.3 反射的抑制和匹配.............................................................................342.6.3.1 串行匹配.........................................................................................352.6.3.1 并行匹配.........................................................................................362.6.3.3 差分線的匹配.................................................................................392.6.3.4 多負(fù)載的匹配.................................................................................41第三章 串?dāng)_的分析...............................................................................................423.1 串?dāng)_的基本概念.........................................................................................423.2 前向串?dāng)_和后向串?dāng)_.................................................................................433.3 后向串?dāng)_的反射.........................................................................................463.4 后向串?dāng)_的飽和.........................................................................................463.5 共模和差模電流對串?dāng)_的影響.................................................................483.6 連接器的串?dāng)_問題.....................................................................................513.7 串?dāng)_的具體計算.........................................................................................543.8 避免串?dāng)_的措施.........................................................................................57第四章 EMI 抑制....................................................................................................604.1 EMI/EMC 的基本概念..................................................................................604.2 EMI 的產(chǎn)生..................................................................................................614.2.1 電壓瞬變.............................................................................................614.2.2 信號的回流.........................................................................................624.2.3 共模和差摸EMI ..................................................................................634.3 EMI 的控制..................................................................................................654.3.1 屏蔽.....................................................................................................654.3.1.1 電場屏蔽.........................................................................................654.3.1.2 磁場屏蔽.........................................................................................674.3.1.3 電磁場屏蔽.....................................................................................674.3.1.4 電磁屏蔽體和屏蔽效率.................................................................684.3.2 濾波.....................................................................................................714.3.2.1 去耦電容.........................................................................................714.3.2.3 磁性元件.........................................................................................734.3.3 接地.....................................................................................................744.4 PCB 設(shè)計中的EMI.......................................................................................754.4.1 傳輸線RLC 參數(shù)和EMI ........................................................................764.4.2 疊層設(shè)計抑制EMI ..............................................................................774.4.3 電容和接地過孔對回流的作用.........................................................784.4.4 布局和走線規(guī)則.................................................................................79第五章 電源完整性理論基礎(chǔ)...............................................................................825.1 電源噪聲的起因及危害.............................................................................825.2 電源阻抗設(shè)計.............................................................................................855.3 同步開關(guān)噪聲分析.....................................................................................875.3.1 芯片內(nèi)部開關(guān)噪聲.............................................................................885.3.2 芯片外部開關(guān)噪聲.............................................................................895.3.3 等效電感衡量SSN ..............................................................................905.4 旁路電容的特性和應(yīng)用.............................................................................925.4.1 電容的頻率特性.................................................................................935.4.3 電容的介質(zhì)和封裝影響.....................................................................955.4.3 電容并聯(lián)特性及反諧振.....................................................................955.4.4 如何選擇電容.....................................................................................975.4.5 電容的擺放及Layout ........................................................................99第六章 系統(tǒng)時序.................................................................................................1006.1 普通時序系統(tǒng)...........................................................................................1006.1.1 時序參數(shù)的確定...............................................................................1016.1.2 時序約束條件...................................................................................1063.2 高速設(shè)計的問題.......................................................................................2093.3 SPECCTRAQuest SI Expert 的組件.......................................................2103.3.1 SPECCTRAQuest Model Integrity .................................................2103.3.2 SPECCTRAQuest Floorplanner/Editor .........................................2153.3.3 Constraint Manager .......................................................................2163.3.4 SigXplorer Expert Topology Development Environment .......2233.3.5 SigNoise 仿真子系統(tǒng)......................................................................2253.3.6 EMControl .........................................................................................2303.3.7 SPECCTRA Expert 自動布線器.......................................................2303.4 高速設(shè)計的大致流程...............................................................................2303.4.1 拓?fù)浣Y(jié)構(gòu)的探索...............................................................................2313.4.2 空間解決方案的探索.......................................................................2313.4.3 使用拓?fù)淠0弪?qū)動設(shè)計...................................................................2313.4.4 時序驅(qū)動布局...................................................................................2323.4.5 以約束條件驅(qū)動設(shè)計.......................................................................2323.4.6 設(shè)計后分析.......................................................................................233第四章 SPECCTRAQUEST SIGNAL EXPLORER 的進(jìn)階運用..........................................2344.1 SPECCTRAQuest Signal Explorer 的功能包括:................................2344.2 圖形化的拓?fù)浣Y(jié)構(gòu)探索...........................................................................2344.3 全面的信號完整性(Signal Integrity)分析.......................................2344.4 完全兼容 IBIS 模型...............................................................................2344.5 PCB 設(shè)計前和設(shè)計的拓?fù)浣Y(jié)構(gòu)提取.......................................................2354.6 仿真設(shè)置顧問...........................................................................................2354.7 改變設(shè)計的管理.......................................................................................2354.8 關(guān)鍵技術(shù)特點...........................................................................................2364.8.1 拓?fù)浣Y(jié)構(gòu)探索...................................................................................2364.8.2 SigWave 波形顯示器........................................................................2364.8.3 集成化的在線分析(Integration and In-process Analysis) .236第五章 部分特殊的運用...............................................................................2375.1 Script 指令的使用..................................................................................2375.2 差分信號的仿真.......................................................................................2435.3 眼圖模式的使用.......................................................................................249第四部分:HYPERLYNX 仿真工具使用指南............................................................251第一章 使用LINESIM 進(jìn)行前仿真.......................................................................2511.1 用LineSim 進(jìn)行仿真工作的基本方法...................................................2511.2 處理信號完整性原理圖的具體問題.......................................................2591.3 在LineSim 中如何對傳輸線進(jìn)行設(shè)置...................................................2601.4 在LineSim 中模擬IC 元件.....................................................................2631.5 在LineSim 中進(jìn)行串?dāng)_仿真...................................................................268第二章 使用BOARDSIM 進(jìn)行后仿真......................................................................2732.1 用BOARDSIM 進(jìn)行后仿真工作的基本方法...................................................2732.2 BoardSim 的進(jìn)一步介紹..........................................................................2922.3 BoardSim 中的串?dāng)_仿真..........................................................................309

    標(biāo)簽: PCB 內(nèi)存 仿真技術(shù)

    上傳時間: 2014-04-18

    上傳用戶:wpt

  • Hyperlynx仿真應(yīng)用:阻抗匹配

    Hyperlynx仿真應(yīng)用:阻抗匹配.下面以一個電路設(shè)計為例,簡單介紹一下PCB仿真軟件在設(shè)計中的使用。下面是一個DSP硬件電路部分元件位置關(guān)系(原理圖和PCB使用PROTEL99SE設(shè)計),其中DRAM作為DSP的擴(kuò)展Memory(64位寬度,低8bit還經(jīng)過3245接到FLASH和其它芯片),DRAM時鐘頻率133M。因為頻率較高,設(shè)計過程中我們需要考慮DRAM的數(shù)據(jù)、地址和控制線是否需加串阻。下面,我們以數(shù)據(jù)線D0仿真為例看是否需要加串阻。模型建立首先需要在元件公司網(wǎng)站下載各器件IBIS模型。然后打開Hyperlynx,新建LineSim File(線路仿真—主要用于PCB前仿真驗證)新建好的線路仿真文件里可以看到一些虛線勾出的傳輸線、芯片腳、始端串阻和上下拉終端匹配電阻等。下面,我們開始導(dǎo)入主芯片DSP的數(shù)據(jù)線D0腳模型。左鍵點芯片管腳處的標(biāo)志,出現(xiàn)未知管腳,然后再按下圖的紅線所示線路選取芯片IBIS模型中的對應(yīng)管腳。 3http://bbs.elecfans.com/ 電子技術(shù)論壇 http://www.elecfans.com 電子發(fā)燒友點OK后退到“ASSIGN Models”界面。選管腳為“Output”類型。這樣,一樣管腳的配置就完成了。同樣將DRAM的數(shù)據(jù)線對應(yīng)管腳和3245的對應(yīng)管腳IBIS模型加上(DSP輸出,3245高阻,DRAM輸入)。下面我們開始建立傳輸線模型。左鍵點DSP芯片腳相連的傳輸線,增添傳輸線,然后右鍵編輯屬性。因為我們使用四層板,在表層走線,所以要選用“Microstrip”,然后點“Value”進(jìn)行屬性編輯。這里,我們要編輯一些PCB的屬性,布線長度、寬度和層間距等,屬性編輯界面如下:再將其它傳輸線也添加上。這就是沒有加阻抗匹配的仿真模型(PCB最遠(yuǎn)直線間距1.4inch,對線長為1.7inch)。現(xiàn)在模型就建立好了。仿真及分析下面我們就要為各點加示波器探頭了,按照下圖紅線所示路徑為各測試點增加探頭:為發(fā)現(xiàn)更多的信息,我們使用眼圖觀察。因為時鐘是133M,數(shù)據(jù)單沿采樣,數(shù)據(jù)翻轉(zhuǎn)最高頻率為66.7M,對應(yīng)位寬為7.58ns。所以設(shè)置參數(shù)如下:之后按照芯片手冊制作眼圖模板。因為我們最關(guān)心的是接收端(DRAM)信號,所以模板也按照DRAM芯片HY57V283220手冊的輸入需求設(shè)計。芯片手冊中要求輸入高電平VIH高于2.0V,輸入低電平VIL低于0.8V。DRAM芯片的一個NOTE里指出,芯片可以承受最高5.6V,最低-2.0V信號(不長于3ns):按下邊紅線路徑配置眼圖模板:低8位數(shù)據(jù)線沒有串阻可以滿足設(shè)計要求,而其他的56位都是一對一,經(jīng)過仿真沒有串阻也能通過。于是數(shù)據(jù)線不加串阻可以滿足設(shè)計要求,但有一點需注意,就是寫數(shù)據(jù)時因為存在回沖,DRAM接收高電平在位中間會回沖到2V。因此會導(dǎo)致電平判決裕量較小,抗干擾能力差一些,如果調(diào)試過程中發(fā)現(xiàn)寫RAM會出錯,還需要改版加串阻。

    標(biāo)簽: Hyperlynx 仿真 阻抗匹配

    上傳時間: 2013-11-05

    上傳用戶:dudu121

  • IC封裝製程簡介(IC封裝制程簡介)

    半導(dǎo)體的產(chǎn)品很多,應(yīng)用的場合非常廣泛,圖一是常見的幾種半導(dǎo)體元件外型。半導(dǎo)體元件一般是以接腳形式或外型來劃分類別,圖一中不同類別的英文縮寫名稱原文為   PDID:Plastic Dual Inline Package SOP:Small Outline Package SOJ:Small Outline J-Lead Package PLCC:Plastic Leaded Chip Carrier QFP:Quad Flat Package PGA:Pin Grid Array BGA:Ball Grid Array         雖然半導(dǎo)體元件的外型種類很多,在電路板上常用的組裝方式有二種,一種是插入電路板的銲孔或腳座,如PDIP、PGA,另一種是貼附在電路板表面的銲墊上,如SOP、SOJ、PLCC、QFP、BGA。    從半導(dǎo)體元件的外觀,只看到從包覆的膠體或陶瓷中伸出的接腳,而半導(dǎo)體元件真正的的核心,是包覆在膠體或陶瓷內(nèi)一片非常小的晶片,透過伸出的接腳與外部做資訊傳輸。圖二是一片EPROM元件,從上方的玻璃窗可看到內(nèi)部的晶片,圖三是以顯微鏡將內(nèi)部的晶片放大,可以看到晶片以多條銲線連接四周的接腳,這些接腳向外延伸並穿出膠體,成為晶片與外界通訊的道路。請注意圖三中有一條銲線從中斷裂,那是使用不當(dāng)引發(fā)過電流而燒毀,致使晶片失去功能,這也是一般晶片遭到損毀而失效的原因之一。   圖四是常見的LED,也就是發(fā)光二極體,其內(nèi)部也是一顆晶片,圖五是以顯微鏡正視LED的頂端,可從透明的膠體中隱約的看到一片方型的晶片及一條金色的銲線,若以LED二支接腳的極性來做分別,晶片是貼附在負(fù)極的腳上,經(jīng)由銲線連接正極的腳。當(dāng)LED通過正向電流時,晶片會發(fā)光而使LED發(fā)亮,如圖六所示。     半導(dǎo)體元件的製作分成兩段的製造程序,前一段是先製造元件的核心─晶片,稱為晶圓製造;後一段是將晶中片加以封裝成最後產(chǎn)品,稱為IC封裝製程,又可細(xì)分成晶圓切割、黏晶、銲線、封膠、印字、剪切成型等加工步驟,在本章節(jié)中將簡介這兩段的製造程序。

    標(biāo)簽: 封裝 IC封裝 制程

    上傳時間: 2014-01-20

    上傳用戶:蒼山觀海

  • P54C-VR奔騰(R)微處理器的電源模塊

      Providing power for the Pentium® microprocessor family isnot a trivial task by any means. In an effort to simplify thistask we have developed a new switching regulator controlcircuit and a new linear regulator to address the needs ofthese processors. Considerable time has been spent developingan optimized decoupling network. Here are severalcircuits using the new LTC®1266 synchronous buck regulatorcontrol chip and the LT®1584 linear regulator toprovide power for Pentium processors and Pentium VREprocessors. The Pentium processor has a supply requirementof 3.3V ±5%. The Pentium VRE processor requires3.500V ±100mV.

    標(biāo)簽: C-VR 54 奔騰 微處理器

    上傳時間: 2013-11-01

    上傳用戶:名爵少年

  • 51單片機(jī)綜合學(xué)習(xí)系統(tǒng)之 步進(jìn)電機(jī)控制篇

    現(xiàn)在比較常用的步進(jìn)電機(jī)分為三種:反應(yīng)式步進(jìn)電機(jī)(VR)、永磁式步進(jìn)電機(jī)(PM)、混合式步進(jìn)電機(jī)(HB)。

    標(biāo)簽: 51單片機(jī) 學(xué)習(xí)系統(tǒng) 步進(jìn)電機(jī)控制

    上傳時間: 2013-11-12

    上傳用戶:lnnn30

  • 用GPIO做步進(jìn)電機(jī)控制

    用GPIO做步進(jìn)電機(jī)控制:步進(jìn)電機(jī)和普通電動機(jī)不同之處是步進(jìn)電機(jī)接受脈沖信號的控制。步進(jìn)電機(jī)靠一種叫環(huán)形分配器的電子開關(guān)器件,通過功率放大器使勵磁繞組按照順序輪流接通直流電源。由于勵磁繞組在空間中按一定的規(guī)律排列,輪流和直流電源接通后,就會在空間形成一種階躍變化的旋轉(zhuǎn)磁場,使轉(zhuǎn)子步進(jìn)式的轉(zhuǎn)動,隨著脈沖頻率的增高,轉(zhuǎn)速就會增大。步進(jìn)電機(jī)的旋轉(zhuǎn)同時與相數(shù)、分配數(shù)、轉(zhuǎn)子齒輪數(shù)有關(guān)。現(xiàn)在比較常用的步進(jìn)電機(jī)包括反應(yīng)式步進(jìn)電機(jī)(VR)、永磁式步進(jìn)電機(jī)(PM)、混合式步進(jìn)電機(jī)(HB)和單相式步進(jìn)電機(jī)等。其中反應(yīng)式步進(jìn)電機(jī)的轉(zhuǎn)子磁路由軟磁材料制成,定子上有多相勵磁繞組,利用磁導(dǎo)的變化產(chǎn)生轉(zhuǎn)矩。現(xiàn)階段,反應(yīng)式步進(jìn)電機(jī)獲得最多的應(yīng)用。步進(jìn)電機(jī)和普通電機(jī)的區(qū)別主要就在于其脈沖驅(qū)動的形式,正是這個特點,步進(jìn)電機(jī)可以和現(xiàn)代的數(shù)字控制技術(shù)相結(jié)合。不過步進(jìn)電機(jī)在控制的精度、速度變化范圍、低速性能方面都不如傳統(tǒng)的閉環(huán)控制的直流伺服電動機(jī)。在精度不是需要特別高的場合就可以使用步進(jìn)電機(jī),步進(jìn)電機(jī)可以發(fā)揮其結(jié)構(gòu)簡單、可靠性高和成本低的特點。使用恰當(dāng)?shù)臅r候,甚至可以和直流伺服電動機(jī)性能相媲美。

    標(biāo)簽: GPIO 步進(jìn)電機(jī)控制

    上傳時間: 2013-11-05

    上傳用戶:xinzhch

  • 用MCP定時器控制步進(jìn)電機(jī)

    用MCP定時器控制步進(jìn)電機(jī):步進(jìn)電機(jī)簡介1.1.1 步進(jìn)電機(jī)步進(jìn)電機(jī)和普通電動機(jī)不同之處是步進(jìn)電機(jī)接受脈沖信號的控制。步進(jìn)電機(jī)靠一種叫環(huán)形分配器的電子開關(guān)器件,通過功率放大器使勵磁繞組按照順序輪流接通直流電源。由于勵磁繞組在空間中按一定的規(guī)律排列,輪流和直流電源接通后,就會在空間形成一種階躍變化的旋轉(zhuǎn)磁場,使轉(zhuǎn)子步進(jìn)式的轉(zhuǎn)動,隨著脈沖頻率的增高,轉(zhuǎn)速就會增大。步進(jìn)電機(jī)的旋轉(zhuǎn)同時與相數(shù)、分配數(shù)、轉(zhuǎn)子齒輪數(shù)有關(guān)。現(xiàn)在比較常用的步進(jìn)電機(jī)包括反應(yīng)式步進(jìn)電機(jī)(VR)、永磁式步進(jìn)電機(jī)(PM)、混合式步進(jìn)電機(jī)(HB)和單相式步進(jìn)電機(jī)等。其中反應(yīng)式步進(jìn)電機(jī)的轉(zhuǎn)子磁路由軟磁材料制成,定子上有多相勵磁繞組,利用磁導(dǎo)的變化產(chǎn)生轉(zhuǎn)矩。現(xiàn)階段,反應(yīng)式步進(jìn)電機(jī)獲得最多的應(yīng)用。步進(jìn)電機(jī)和普通電機(jī)的區(qū)別主要就在于其脈沖驅(qū)動的形式,正是這個特點,步進(jìn)電機(jī)可以和現(xiàn)代的數(shù)字控制技術(shù)相結(jié)合。不過步進(jìn)電機(jī)在控制的精度、速度變化范圍、低速性能方面都不如傳統(tǒng)的閉環(huán)控制的直流伺服電動機(jī)。在精度不是需要特別高的場合就可以使用步進(jìn)電機(jī),步進(jìn)電機(jī)可以發(fā)揮其結(jié)構(gòu)簡單、可靠性高和成本低的特點。使用恰當(dāng)?shù)臅r候,甚至可以和直流伺服電動機(jī)性能相媲美。

    標(biāo)簽: MCP 定時器 控制 步進(jìn)電機(jī)

    上傳時間: 2014-04-28

    上傳用戶:joheace

  • 采用A3955和PIC16C621A的步進(jìn)電機(jī)驅(qū)動器設(shè)計

    摘要: 本文介紹了利用A3955對步進(jìn)電機(jī)實現(xiàn)控制的方法及其電路設(shè)計。關(guān)鍵詞: 步進(jìn)電機(jī);PIC16C621A; A3955;脈寬調(diào)制 步進(jìn)電機(jī)廣泛應(yīng)用于對精度要求比較高的運動控制系統(tǒng)中,如機(jī)器人、打印機(jī)、軟盤驅(qū)動器、繪圖儀、機(jī)械閥門控制器等。目前,對步進(jìn)電機(jī)的控制主要有由分散器件組成的環(huán)形脈沖分配器、軟件環(huán)形脈沖分配器、專用集成芯片環(huán)形脈沖分配器等。分散器件組成的環(huán)形脈沖分配器體積比較大,同時由于分散器件的延時,其可靠性大大降低;軟件環(huán)形分配器要占用主機(jī)的運行時間,降低了速度;專用集成芯片環(huán)形脈沖分配器集成度高、可靠性好,但其適應(yīng)性受到限制,同時開發(fā)周期長、需求費用較高。 步進(jìn)電機(jī)控制步進(jìn)電機(jī)是數(shù)字控制電機(jī),它將脈沖信號轉(zhuǎn)變成角位移,即給一個脈沖信號,步進(jìn)電機(jī)制。步進(jìn)電機(jī)可分為反應(yīng)式步進(jìn)電機(jī)(VR)、永磁式步進(jìn)電機(jī)(PM)和混合式步進(jìn)電機(jī)(HB)。 步進(jìn)電機(jī)區(qū)別于其他控制電機(jī)的最大特點是,它是通過輸入脈沖信號來進(jìn)行控制的,即電機(jī)的總轉(zhuǎn)動角度由輸入脈沖數(shù)決定,而電機(jī)的轉(zhuǎn)速由脈沖信號頻率決定。步進(jìn)電機(jī)的驅(qū)動電路根據(jù)控制信號工作,控制信號由單片機(jī)產(chǎn)生。就轉(zhuǎn)動一個角度,因此非常適合于單片機(jī)控。

    標(biāo)簽: A3955 621A C621 16C

    上傳時間: 2013-12-05

    上傳用戶:lionlwy

主站蜘蛛池模板: 偏关县| 霍城县| 南召县| 霍州市| 台山市| 冀州市| 合江县| 理塘县| 永川市| 宽城| 革吉县| 托克逊县| 上杭县| 遵义县| 曲水县| 广宗县| 德化县| 新安县| 青州市| 沂源县| 天长市| 杭州市| 沐川县| 万安县| 舞钢市| 岫岩| 祁门县| 方山县| 武隆县| 湘潭市| 大足县| 连平县| 汉阴县| 安康市| 林芝县| 百色市| 武汉市| 云霄县| 德化县| 大方县| 宁晋县|