亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁(yè)| 資源下載| 資源專輯| 精品軟件
登錄| 注冊(cè)

Variance

  • Routine mar1psd: To compute the power spectum by AR-model parameters. Input parameters: ip : AR

    Routine mar1psd: To compute the power spectum by AR-model parameters. Input parameters: ip : AR model order (integer) ep : White noise Variance of model input (real) ts : Sample interval in seconds (real) a : Complex array of AR parameters a(0) to a(ip) Output parameters: psdr : Real array of power spectral density values psdi : Real work array in chapter 12

    標(biāo)簽: parameters AR-model Routine mar1psd

    上傳時(shí)間: 2015-06-09

    上傳用戶:playboys0

  • This program demonstrates some function approximation capabilities of a Radial Basis Function Networ

    This program demonstrates some function approximation capabilities of a Radial Basis Function Network. The user supplies a set of training points which represent some "sample" points for some arbitrary curve. Next, the user specifies the number of equally spaced gaussian centers and the Variance for the network. Using the training samples, the weights multiplying each of the gaussian basis functions arecalculated using the pseudo-inverse (yielding the minimum least-squares solution). The resulting network is then used to approximate the function between the given "sample" points.

    標(biāo)簽: approximation demonstrates capabilities Function

    上傳時(shí)間: 2014-01-01

    上傳用戶:zjf3110

  • A series of .c and .m files which allow one to perform univariate and bivariate wavelet analysis of

    A series of .c and .m files which allow one to perform univariate and bivariate wavelet analysis of discrete time series. Noother wavelet package is necessary -- everything is contained in this archive. The C-code computes the DWT and maximal overlap DWT. MATLAB routines are then used to compute such quantities as the wavelet Variance, coVariance, correlation, cross-coVariance and cross-correlation. Approximate confidence intervals are available for all quantities except the cross-coVariance and cross-correlation. A set of commands is provided. For a description of this example, please see http://www.eurandom.tue.nl/whitcher/software/.

    標(biāo)簽: univariate and bivariate analysis

    上傳時(shí)間: 2015-06-23

    上傳用戶:chongcongying

  • This paper examines the asymptotic (large sample) performance of a family of non-data aided feedfor

    This paper examines the asymptotic (large sample) performance of a family of non-data aided feedforward (NDA FF) nonlinear least-squares (NLS) type carrier frequency estimators for burst-mode phase shift keying (PSK) modulations transmitted through AWGN and flat Ricean-fading channels. The asymptotic performance of these estimators is established in closed-form expression and compared with the modified Cram`er-Rao bound (MCRB). A best linear unbiased estimator (BLUE), which exhibits the lowest asymptotic Variance within the family of NDA FF NLS-type estimators, is also proposed.

    標(biāo)簽: performance asymptotic examines non-data

    上傳時(shí)間: 2015-12-30

    上傳用戶:225588

  • We present a particle filter construction for a system that exhibits time-scale separation. The sep

    We present a particle filter construction for a system that exhibits time-scale separation. The separation of time-scales allows two simplifications that we exploit: i) The use of the averaging principle for the dimensional reduction of the system needed to solve for each particle and ii) the factorization of the transition probability which allows the Rao-Blackwellization of the filtering step. Both simplifications can be implemented using the coarse projective integration framework. The resulting particle filter is faster and has smaller Variance than the particle filter based on the original system. The convergence of the new particle filter to the analytical filter for the original system is proved and some numerical results are provided.

    標(biāo)簽: construction separation time-scale particle

    上傳時(shí)間: 2016-01-02

    上傳用戶:fhzm5658

  • Probabilistic Principal Components Analysis. [VAR, U, LAMBDA] = PPCA(X, PPCA_DIM) computes the princ

    Probabilistic Principal Components Analysis. [VAR, U, LAMBDA] = PPCA(X, PPCA_DIM) computes the principal % component subspace U of dimension PPCA_DIM using a centred coVariance matrix X. The variable VAR contains the off-subspace Variance (which is assumed to be spherical), while the vector LAMBDA contains the Variances of each of the principal components. This is computed using the eigenvalue and eigenvector decomposition of X.

    標(biāo)簽: Probabilistic Components Principal Analysis

    上傳時(shí)間: 2016-04-28

    上傳用戶:qb1993225

  • ofdm信道特性 Channel transmission simulator Channel transmission simulator % % inputs: % sig2 - noi

    ofdm信道特性 Channel transmission simulator Channel transmission simulator % % inputs: % sig2 - noise Variance % Mt - number of Tx antennas % Mr - number of Rx antennas % x - vector of complex input symbols (for MIMO, this is a matrix, where each column % is the value of the antenna outputs at a single time instance) % H - frequency selective channel - represented in block-Toeplitz form for MIMO transmission % N - number of symbols transmitted in OFDM frame % % outputs: % y - vector of channel outputs (matrix for MIMO again, just like x matrix) % create noise vector sequence (each row is a different antenna, each column is a % different time index) note: noise is spatially and temporally white

    標(biāo)簽: transmission simulator Channel inputs

    上傳時(shí)間: 2016-07-22

    上傳用戶:kelimu

  • This function calculates Akaike s final prediction error % estimate of the average generalization e

    This function calculates Akaike s final prediction error % estimate of the average generalization error. % % [FPE,deff,varest,H] = fpe(NetDef,W1,W2,PHI,Y,trparms) produces the % final prediction error estimate (fpe), the effective number of % weights in the network if the network has been trained with % weight decay, an estimate of the noise Variance, and the Gauss-Newton % Hessian. %

    標(biāo)簽: generalization calculates prediction function

    上傳時(shí)間: 2014-12-03

    上傳用戶:maizezhen

  • This function calculates Akaike s final prediction error % estimate of the average generalization e

    This function calculates Akaike s final prediction error % estimate of the average generalization error for network % models generated by NNARX, NNOE, NNARMAX1+2, or their recursive % counterparts. % % [FPE,deff,varest,H] = nnfpe(method,NetDef,W1,W2,U,Y,NN,trparms,skip,Chat) % produces the final prediction error estimate (fpe), the effective number % of weights in the network if it has been trained with weight decay, % an estimate of the noise Variance, and the Gauss-Newton Hessian. %

    標(biāo)簽: generalization calculates prediction function

    上傳時(shí)間: 2016-12-27

    上傳用戶:腳趾頭

  • In this project we analyze and design the minimum mean-square error (MMSE) multiuser receiver for un

    In this project we analyze and design the minimum mean-square error (MMSE) multiuser receiver for uniformly quantized synchronous code division multiple access (CDMA) signals in additive white Gaussian noise (AWGN) channels.This project is mainly based on the representation of uniform quantizer by gain plus additive noise model. Based on this model, we derive the weight vector and the output signal-to-interference ratio (SIR) of the MMSE receiver. The effects of quantization on the MMSE receiver performance is characterized in a single parameter named 鈥漞quivalent noise Variance鈥? The optimal quantizer stepsize which maximizes the MMSE receiver output SNR is also determined.

    標(biāo)簽: mean-square multiuser receiver project

    上傳時(shí)間: 2014-11-21

    上傳用戶:ywqaxiwang

亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产欧美韩日| 国产精品www色诱视频| 亚洲无线视频| 这里只有精品视频| 日韩一级片网址| 99热在这里有精品免费| 亚洲欧美春色| 亚洲综合欧美| 国产一区二区激情| 99精品热6080yy久久| 亚洲私人影院在线观看| 亚洲图片欧美午夜| 久久久欧美一区二区| 国产日韩精品一区二区三区在线| 狠狠色丁香久久综合频道| 亚洲欧洲日产国码二区| 亚洲美女视频| 91久久中文| 欧美日韩高清在线播放| 欧美精品一区二| 国产在线播放一区二区三区| 国产精品视频| 亚洲欧美成人精品| 欧美精品18videos性欧美| 国产一区二区三区久久 | 国产美女一区| 欧美在线综合视频| 欧美韩日视频| 国产乱人伦精品一区二区| 怡红院精品视频在线观看极品| 欧美中文在线视频| 国产日韩在线亚洲字幕中文| 狠狠色丁香婷婷综合| 亚洲毛片在线| 翔田千里一区二区| 国产一区在线观看视频| 99国产精品久久久| 性娇小13――14欧美| 裸体丰满少妇做受久久99精品| 亚洲国产视频一区二区| 欧美亚洲一区二区在线| 欧美日韩国产欧美日美国产精品| 欧美成人免费小视频| 日韩午夜精品视频| 免费观看欧美在线视频的网站| 欧美色图五月天| 午夜激情久久久| 欧美三级特黄| 久久野战av| 欧美高潮视频| 亚洲一区免费| 国产一区二区三区在线观看免费视频 | 国产伪娘ts一区| 欧美激情影音先锋| 久久久中精品2020中文| 91久久久久久久久| 欧美喷潮久久久xxxxx| 国产精品外国| 国产精品久久国产愉拍| 国产综合亚洲精品一区二| 在线欧美三区| 久久精品99国产精品| 国产精品国产三级国产a| 亚洲国产天堂网精品网站| 亚洲欧美另类在线| 欧美日一区二区三区在线观看国产免| 国产精品视频xxxx| 亚洲一区在线播放| 亚洲一区三区视频在线观看| 久久久91精品| 国产综合在线看| 午夜精品电影| 国产精品人成在线观看免费 | 另类春色校园亚洲| 久久久激情视频| 国产精品无人区| 国产精品视频自拍| 日韩一区二区高清| 欧美日本精品| 亚洲免费中文| 国产精品自拍网站| 亚洲视频成人| 午夜精品福利在线观看| 国产麻豆日韩| 国内精品一区二区三区| 欧美一区二区视频免费观看| 国产亚洲欧洲一区高清在线观看| 亚洲三级网站| 国产精品成人在线| 国产午夜精品一区二区三区视频| 国产午夜精品久久久| 亚洲一区二区综合| 欧美午夜视频一区二区| 久久国产一区| 在线亚洲美日韩| 国产亚洲一区二区三区在线播放| 久久久久久久网| 亚洲美女一区| 久久久久欧美精品| 欧美精品在欧美一区二区少妇| 影音先锋中文字幕一区| 欧美电影电视剧在线观看| 夜夜嗨av一区二区三区中文字幕| 久久国产精品电影| 亚洲精品社区| 久久综合狠狠综合久久综合88| 亚洲一区二区三区影院| 国产一区二区剧情av在线| 免费久久精品视频| 午夜日韩福利| 伊伊综合在线| 久热爱精品视频线路一| 中日韩男男gay无套 | 国产视频观看一区| 亚洲狠狠丁香婷婷综合久久久| 欧美午夜精品久久久久久孕妇| 欧美大尺度在线观看| 在线亚洲一区二区| 国产精品人成在线观看免费| 牛牛影视久久网| 这里只有视频精品| 美乳少妇欧美精品| 国产精品久久国产精品99gif| 欧美视频在线播放| 欧美精品aa| 国产麻豆91精品| 激情视频一区二区| 亚洲天堂av高清| 玖玖精品视频| 国产精品视频精品视频| 欧美视频中文字幕在线| 亚洲伊人观看| 久久久久久亚洲精品不卡4k岛国| 欧美精品自拍| 国产在线精品二区| 亚洲综合久久久久| 久久精品国语| 国产精品免费一区二区三区在线观看| 久久久久久久91| 欧美另类高清视频在线| 国产一区二区三区在线观看视频 | 欧美一区二区啪啪| 性欧美大战久久久久久久久| 欧美在线观看天堂一区二区三区| 亚洲综合二区| 欧美色视频一区| 精品不卡视频| 欧美日韩一区二区三区在线| 亚洲国产另类精品专区 | 一区二区毛片| 中文网丁香综合网| 亚洲一区观看| 中国成人在线视频| 久久―日本道色综合久久| 久久人人97超碰国产公开结果| 欧美精品系列| 国产精品成人午夜| 亚洲精品国产日韩| 亚洲精品国产拍免费91在线| 欧美一级视频免费在线观看| 久久久久久久精| 欧美精品成人91久久久久久久| 国产麻豆91精品| 性欧美超级视频| 99在线精品观看| 在线不卡欧美| 日韩午夜精品| 国产精品乱码久久久久久| 欧美激情久久久久| 欧美xx视频| 亚洲午夜精品一区二区三区他趣| 欧美日韩中文另类| 国产精品久久午夜| 永久免费毛片在线播放不卡| 久久久久国产精品厨房| 久久久久国产精品一区| 欧美成人在线免费观看| 欧美午夜电影网| 亚洲激情网站| 亚洲欧美激情四射在线日 | 久久久一二三| 免费精品99久久国产综合精品| 国产农村妇女毛片精品久久麻豆| 激情综合自拍| 亚洲精品乱码久久久久久日本蜜臀| 亚洲一区二区高清| 免费日韩成人| 国产欧美精品一区二区色综合| 亚洲经典在线看| 麻豆精品精华液| 国产精品日韩精品欧美在线| 亚洲第一精品夜夜躁人人躁| 亚洲欧美成人综合| 国产精品久久中文| 亚洲精品久久久久久久久| 欧美自拍偷拍| 欧美日韩精品在线| 亚洲毛片av在线| 久久全国免费视频| 国产精品综合久久久|