Wireless Fidelity (Wi-Fi) networks have become mainstream over the last few years. What started out as cable replacement for static desktops in indoor networks has been extended to fully mobile broadband applications involving moving vehicles, high-speed trains, and even airplanes.
標簽: Technologies Emerging Wireless Theory LANs in
上傳時間: 2020-05-27
上傳用戶:shancjb
The next-generation wireless broadband technology is changing the way we work, live, learn, and communicate through effective use of state- of-the-art mobile broadband technology. The packet-data-based revolu- tion started around 2000 with the introduction of 1x Evolved Data Only (1xEV-DO) and 1x Evolved Data Voice (1xEV-DV) in 3GPP2 and High Speed Downlink Packet Access (HSDPA) in 3GPP. The wireless broad- band fourth-generation technology (4G) is an evolution of the packet- based 3G system and provides a comprehensive evolution of the Universal Mobile Telecommunications System specifications so as to remain competitive with other broadband systems such as 802.16e (WiMAX)
標簽: Essentials LTE-A LTE and of
上傳時間: 2020-05-27
上傳用戶:shancjb
With the rapid growth in the number of wireless applications, services and devices, using a single wireless technology such as a second generation (2G) and third gener- ation (3G) wireless system would not be efficient to deliver high speed data rate and quality-of-service (QoS) support to mobile users in a seamless way. The next genera- tion wireless systems (also sometimes referred to as Fourth generation (4G) systems) are being devised with the vision of heterogeneity in which a mobile user/device will be able to connect to multiple wireless networks (e.g., WLAN, cellular, WMAN) simultaneously.
標簽: Heterogeneous Wireless Networks Access
上傳時間: 2020-05-27
上傳用戶:shancjb
The first Third Generation Partnership Project (3GPP) Wideband Code Division Multiple Access (WCDMA) networks were launched during 2002. By the end of 2005 there were 100 open WCDMA networks and a total of over 150 operators having frequency licenses for WCDMA operation. Currently, the WCDMA networks are deployedinUniversalMobileTelecommunicationsSystem(UMTS)bandaround2GHz in Europe and Asia including Japan and Korea. WCDMA in America is deployed in the existing 850 and 1900 spectrum allocations while the new 3G band at 1700/2100 is expected to be available in the near future. 3GPP has defined the WCDMA operation also for several additional bands, which are expected to be taken into use during the coming years.
標簽: HSDPAHSUPA Access Speed Radio UMTS High for
上傳時間: 2020-05-27
上傳用戶:shancjb
In the nineteenth century, scientists, mathematician, engineers and innovators started investigating electromagnetism. The theory that underpins wireless communications was formed by Maxwell. Early demonstrations took place by Hertz, Tesla and others. Marconi demonstrated the first wireless transmission. Since then, the range of applications has expanded at an immense rate, together with the underpinning technology. The rate of development has been incredible and today the level of technical and commercial maturity is very high. This success would not have been possible without understanding radio- wave propagation. This knowledge enables us to design successful systems and networks, together with waveforms, antennal and transceiver architectures. The radio channel is the cornerstone to the operation of any wireless system.
標簽: LTE-Advanced Generation Next and
上傳時間: 2020-05-27
上傳用戶:shancjb
With the rapid growth of the wireless mobile applications, wireless voice has begun to challenge wireline voice, whereas the desire to access e-mail, surf the Web or download music (e.g., MP3) wirelessly is increasing for wireless data. While second generation (2G) cellular wireless systems, such as cdmaOne1, GSM2 and TDMA3, introduced digital technology to wireless cellular systems to deal with the increasing demand for wireless applications, there is still the need for more spectrally efficient technologies for two reasons. First, wireless voice capacity is expected to continue to grow. Second, the introduction of high-speed wireless data will require more bandwidth.
標簽: Wireless Systems Mobile Beyond and 3G
上傳時間: 2020-05-30
上傳用戶:shancjb
Emerging technologies such as WiFi and WiMAX are profoundly changing the landscape of wireless broadband. As we evolve into future generation wireless networks, a primary challenge is the support of high data rate, integrated multi- media type traffic over a unified platform. Due to its inherent advantages in high-speed communication, orthogonal frequency division multiplexing (OFDM) has become the modem of choice for a number of high profile wireless systems (e.g., DVB-T, WiFi, WiMAX, Ultra-wideband).
標簽: OFDM-Based Broadband Networks Wireless
上傳時間: 2020-05-31
上傳用戶:shancjb
Rapid progress in information and communications technology (ICT) induces improved and new telecommunications services and contributes greatly to society in general and to vendors and network and service providers. In addition to existing services such as telephony or leased line services, spread of the Internet, the Internet Protocol (IP) phone, and new communications services like IPTV are making great progress with the development of digital subscriber lines (DSL) and high - speed communications technologies like fi ber to the home (FTTH).
標簽: Telecommunications Networks
上傳時間: 2020-06-01
上傳用戶:shancjb
Changes in telecommunications are impacting all types of user group, which include business users, traveling users, small and home offices, and residential users. The acceptance rate of telecom- munications and information services is accelerating significantly. Voice services needed approximately 50 years to reach a very high teledensity; television needed just 15 years to change the culture and lives of many families; the Internet and its related services have been penetrating and changing business practices and private com- munications over the last 2 to 3 years.
標簽: Telecommunications Handbook The
上傳時間: 2020-06-01
上傳用戶:shancjb
The advent of modern wireless devices, such as smart phones and MID 1 terminals, has revolutionized the way people think of personal connectivity. Such devices encompass multiple applications ranging from voice and video to high-speed data transfer via wireless networks. The voracious appetite of twenty-first century users for supporting more wireless applications on a single device is ever increasing. These devices employ multiple radios and modems that cover multiple frequency bands and multiple standards with a manifold of wireless applications often running simultaneously.
標簽: Architectures Wireless Receiver Design and
上傳時間: 2020-06-01
上傳用戶:shancjb