Never have telecommunications operations and network management been so
important. Never has it been more important to move away from practices that date
back to the very beginning of the telecommunications industry. Building and con-
necting systems internally at low cost, on an as - needed basis, and adding software
for supporting new networks and services without an overall architectural design
will not be cost effective for the future. Defi ning operations and network manage-
ment requirements at the 11th hour for new technologies, networks, and services
deployments must also change.
Software defined radio (SDR) is an exciting new field for the wireless indus-
try; it is gaining momentum and beginning to be included in commercial
and defense products. The technology offers the potential to revolutionize
the way radios are designed, manufactured, deployed, and used. SDR prom-
ises to increase flexibility, extend hardware lifetime, lower costs, and reduce
time to market
Intensive development of digital technologies coincided in time with the beginning
of the new era in telecommunications. It made possible to formalize many proce-
dures of data exchange and to atomize some operations which made providing of
serviceandmakeworkofmanytelecommunicationworkersmucheasier. Somenew
telecommunication technologies were born out of the necessity for use of specific
configurations of network elements and networks, as well as for a possibility of
providing maximum characteristics of efficiency combined with high requirements
to the stability of operation, the overcoming of different catastrophic situations and
deadlockconditions,such as failuresand ”pending”of the networkandthe like. The
thresholdbetweeninformationsystems andtelecommunicationsystems has become
practically invisible. It resulted in such a new term as ”infocommunication”
Having dealt with in-depth analysis of SS#7, GSM and GPRS networks I started to monitor
UTRAN interfaces approximately four years ago. Monitoring interfaces means decoding
the data captured on the links and analysing how the different data segments and messages
are related to each other. In general I wanted to trace all messages belonging to a single
call to prove if the network elements and protocol entities involved worked fine or if there
had been failures or if any kind of suspicious events had influenced the normal call
proceeding or the call’s quality of service. Cases showing normal network behaviour have
been documented in Kreher and Ruedebusch (UMTS Signaling. John Wiley & Sons, Ltd,
2005), which provides examples for technical experts investigating call flows and network
procedures.
With more than two billion terminals in commercial operation world-wide, wire-
less and mobile technologies have enabled a first wave of pervasive communication
systems and applications. Still, this is only the beginning as wireless technologies
such as RFID are currently contemplated with a deployment potential of tens of
billions of tags and a virtually unlimited application potential. A recent ITU report
depicts a scenario of “Internet of things” — a world in which billions of objects will
report their location, identity, and history over wireless connections.
I can remember buying my first electronic calculator. I was teaching a graduate level statistics course and I
had to have a calculator with a square root function. Back in the late 1960s, that was a pretty high-end
requirement for a calculator. I managed to purchase one at the “educational discount price” of $149.95!
Now, I look down at my desk at an ATmega2560 that is half the size for less than a quarter of the cost and
think of all the possibilities built into that piece of hardware. I am amazed by what has happened to
everything from toasters to car engines. Who-da-thunk-it 40 years ago?
Control systems are becoming more important every day. At the beginning, the in-
dustry used sequential controls for solving a lot of industrial applications in control
systems, and then the linear systems gave us a huge increase in applying automatic
linear control on industrial application. One of the most recent methods for control-
ling industrial applications is intelligent control, which is based on human behavior
or concerning natural process.