Sensing and/or controlling current flow is a fundamental requirement in many electronics systems, and the tech-niques to do so are as diverse as the applications them-selves. This Application Note compiles solutions to cur-rent sensing problems and organizes the solutions by general application type. These circuits have been culled from a variety of Linear Technology documents
HIGH SPEED 8051 μC CORE
- Pipe-lined Instruction Architecture; Executes 70% of Instructions in 1 or 2
System Clocks
- Up to 25MIPS Throughput with 25MHz System Clock
- 22 Vectored Interrupt Sources
MEMORY
- 4352 Bytes Internal Data RAM (256 + 4k)
- 64k Bytes In-System Programmable FLASH Program Memory
- External Parallel Data Memory Interface – up to 5Mbytes/sec
DIGITAL PERIPHERALS
- 64 Port I/O; All are 5V tolerant
- Hardware SMBusTM (I2CTM Compatible), SPITM, and Two UART Serial
Ports Available Concurrently
- Programmable 16-bit Counter/Timer Array with 5 Capture/Compare
Modules
- 5 General Purpose 16-bit Counter/Timers
- Dedicated Watch-Dog Timer; Bi-directional Reset
CLOCK SOURCES
- Internal Programmable Oscillator: 2-to-16MHz
- External Oscillator: Crystal, RC, C, or Clock
- Real-Time Clock Mode using Timer 3 or PCA
SUPPLY VOLTAGE ........................ 2.7V to 3.6V
- Typical Operating Current: 10mA @ 25MHz
- Multiple Power Saving Sleep and Shutdown Modes
100-Pin TQFP (64-Pin Version Available)
Temperature Range: –40°C to +85°C
利用單片機具有的智能程序控制的特點,設計了基于STC89C52單片機的"二極管特性測試器",可對二極管一般特性進行快速測試。通過穩定線性電流源給二極管加載恒定電流,然后由高精度模數轉換器測試其壓降,以此為基礎可判斷二極管好壞、檢測二極管極性和測試二極管伏安特性等,避免了用萬用表測試只能測得極性而不知其特性這一缺點。可用于電子設計制作過程中對二極管進行快速測試,以確定被測二極管是否滿足電路的設計要求。
Abstract:
By making good use of the intelligent control function of the Micro Controller Unit (MCU), the diode trait tester was designed based on the STC89C52,which could be used to test the trait of a diode rapidly. By loading constant current to diode through the stable linear current source, and measuring the voltage drop of the diode by high-precision analogue-to-digital converter (ADC), it can judge whether the diode is good or not, distinguish the polarity of the diode, and test the trait that the diode, which can avoid the fault of using a multimeter can only measure the polarity but not the trait. This device can be used to test the trait of a diode quickly,and to make sure that whether a diode can be used in the electronic design or not.
現有基于MAX7219芯片的數碼管驅動電路只適用于小尺寸LED,為擴展其使用范圍,在介紹動態顯示芯片MAX7219功能的基礎上,提出了一個基于該芯片的8位高亮度8英寸數碼管驅動電路。電路保留了MAX7219芯片的功能強大、編程簡單等優點,通過74LS273鎖存器和ULN2803達林頓驅動器,實現了對任意大尺寸數碼管提供較高電壓和電流驅動的靜態顯示,并亮度可調。
Abstract:
The existing display-driving circuit based on MAX7219 was only applicable to small-size LED. To expand its use, based on the function introduction of dynamic display chip MAX7219, a display-driving circuit for high-brightness 8-bit LED with the size of 8-inch was proposed. The advantages of MAX7219 were retained, such as powerful function and simple programming. Static display with adjustable brightness for large-size LED with higher voltage and current was achieved with the help of 74LS273 and ULN2803.
為了有效地提升鉛酸蓄電池的使用壽命,同時實現對充電過程的監控,設計出一種用單片機控制的36 V鉛酸蓄電池充電電源。本電路采用反激式拓撲,連續電流工作模式,電源管理IC設計在電源的副邊,由ELAN公司的EM78P258N單片機模擬,是用可編程器件模擬電源管理IC,實現智能電源低成本化的一次成功嘗試,通過對單片機的軟件設計實現了充電電源的狀態顯示、充電時間控制、報警、過溫保護、過壓保護、過流保護等功能。本充電器真正的實現了鉛酸蓄電池的三段式充電過程,其最高輸出功率可達90 W,效率約85%,成本不到20元,具有很高的市場競爭力。
Abstract: In order to extend the life of lead-acid battery efficiently and supervise the charging process meanwhile, a 36V lead-acid battery charge powe supply controlled by microcontroller is designed. The charger is flyback switching power supply and works in CCM mode. A EM78P258N microcontroller made by ELAN microelectronics corporation is used as power management IC which is designed at the secondary circuit. The project is a successful attempt to low-cost intelligent power used microcontroller simulating power management IC. The charger also has the functions of the status reveal, charge time control, alarming, thermal protect, current limit and overvoltage protect by the software design. The circuit actually implements the three-step charge process, whose power is up to 90W and whose efficiency can get 85%. The net cost of this charger is less than 20 RMB, so that the charger is of powerful market competitiveness.
為解決當前計算機串行通訊接口只有USB,難以滿足舊型號設備或某些單片機要求RS232通訊的問題,設計出兩款RS232/USB電路。采用CH341A與MAX223集成電路芯片構建標準9線RS232/USB通用接口轉換器,無需編程。采用CH341A與PIC16F877A構建單片機與計算機之間的USB通訊電路,軟件遵循RS232通訊協議,硬件進行電平轉換。實際使用表明,這兩款產品與計算機端Windows 操作系統下的串口應用程序完全兼容,且通訊過程中無握手失敗現象。
Abstract: To solve the problem that current computer serial communication only with USB interface can not satisfy with the old type equipments or MCU to communicate with RS232, two kinds of RS232/USB circuit were designed.CH341A and MAX223 integrated circuit chips were used to create a standard 9-line RS232/USB universal interface convertor without programme. CH341A and PIC16F877A chips were adopted to build the USB communication circuit between computers and MCU. The software follows RS232 communication protocol, and the hardware converts electrical levels. Actual practices indicate that the two manufactures are compatible with serial application program of Windows operation system completely,and get avoid of handshake lost.
為提高太陽能的利用率,以ATmega8單片機為控制核心,設計了一套光電跟蹤與視日運動軌跡跟蹤互補控制的雙軸太陽跟蹤器。該跟蹤器在晴天時,利用光敏電阻采集光強判斷太陽位置,控制步進電機實現光電跟蹤;在陰天時,采集時鐘器件PCF8583的時間信息,計算當前太陽位置來實現視日運動軌跡跟蹤。實驗表明:該太陽跟蹤器能在不同天氣狀況下對太陽進行較準確地跟蹤,能量接收效率提高了30%,達到充分利用太陽能的目的。
Abstract:
To improve the utilization rate of solar energy,a kind of solar tracking controller which effectively combined the sun angle tracking and photo electric tracking based on ATmega8is designed.In the sunny days,the solar tracking con-troller determines the sun's position by using photosensitive resistances to collect light intensity and control stepper motors to achieve photo electric tracking,n cloudy days,it collects clock chip PCF8583time information to calculate the current position of the sun and achieve the sun angle tracking.Experimental results show the solar tracking controller accurately tracks the sun in different weather conditions,improves received energy efficiency by30%and reaches the purpose of full use of solar energy.
以89S52單片機和EP1C6Q240C8型FPGA為控制核心的多功能計數器,是由峰值檢波、A/D轉換、程控放大、比較整形、移相網絡部分組成,可實現測量正弦信號的頻率、周期和相位差的功能。多功能計數器采用等精度的測量方法,可實現頻率為1Hz~10MHz、幅度為0.01~5Vrms的正弦信號的精確測頻,以及頻率為10Hz~100kHz、幅度為0.5~5Vrms的正弦信號精確測相。液晶顯示器能夠實時顯示當前信號的頻率、周期和相位差。該多功能計數器精度高,界面友好,實用性強。
Abstract:
A multi-function counter,which uses89S52MCU and EP1C6Q240C8FPGA as a control core,consists of peak detector,A/D conversion,program-controlled amplification,compared shaping and phase-shifting network part.The counter measures the frequency,period and phase of sinusoidal signal.With the equal precision method,the multi-function counter achieves the precise frequency measurement of the sinusoidal signal which its frequency is from1Hz to10MHz,its amplitude is from0.01Vrms to5Vrms,as well as the accurate phase measurement of the sinusoidal signal which its frequency is from10Hz to100kHz,its amplitude is from0.5Vrms to5Vrms.The LCD monitor real-time displays the frequency,period and phase difference of current signal.The multi-function counter features high precision,friendly interface,and strong practical.