This example streams input from a ADC source to a DAC.
An analog signal is acquired block-by-block into SDRAM from the ADC (an AD9244 in this example).
The frames are then output with a one-frame delay to the DAC (an AD9744 in this example).
In this example, no processing is done on the frames. They are passed unaltered.
In computer vision, sets of data acquired by sampling the same scene or object at different times, or from different perspectives, will be in different coordinate systems. Image registration is the process of transforming the different sets of data into one coordinate system. Registration is necessary in order to be able to compare or integrate the data obtained from different measurements. Image registration is the process of transforming the different sets of data into one coordinate system. To be precise it involves finding transformations that relate spatial information conveyed in one image to that in another or in physical space. Image registration is performed on a series of at least two images, where one of these images is the reference image to which all the others will be registered. The other images are referred to as target images.
The need for accurate monitoring and analysis of sequential data arises in many scientic, industrial
and nancial problems. Although the Kalman lter is effective in the linear-Gaussian
case, new methods of dealing with sequential data are required with non-standard models.
Recently, there has been renewed interest in simulation-based techniques. The basic idea behind
these techniques is that the current state of knowledge is encapsulated in a representative
sample from the appropriate posterior distribution. As time goes on, the sample evolves and
adapts recursively in accordance with newly acquired data. We give a critical review of recent
developments, by reference to oil well monitoring, ion channel monitoring and tracking
problems, and propose some alternative algorithms that avoid the weaknesses of the current
methods.
It can be argued that the current free-software movement is the most important
thing happening in computing today. We are in the midst of a major shift from
all software being proprietary and closely held by individual companies to a large
body of software that can be freely acquired and used by anyone for any purpose.
Free software now includes not only programming language compilers and linkers,
but numerous utilities, graphical user interface environments, and even entire
operating systems.
The first gem of wisdom I ever acquired about consulting, obtained many years ago
from a former schoolmate, was to ensure that everything is plugged in: no continuity, no
data. Wires carry voltages and currents from one place to another. Their behavior is
reasonably simple and predictable—at least for sufficiently low data rates and short
lengths—and they can be seen, grabbed, traced, and tugged.
n present power system, the engineers face variety of challenges in
planning, construction and operation. In some of the problems, the engineers need
to use managerial talents. In system design or upgrading the entire system into
automatic control instead of slow response of human operator, the engineers need
to exercise more technical knowledge and experience. It is principally the engi-
neer’s ability to achieve the success in all respect and provide the reliable and
uninterrupted service to the customers. This chapter covers some important areas
of the traditional power system that helps engineers to overcome the challenges. It
emphasizes the characteristics of the various components of a power system such
as generation, transmission, distribution, protection and SCADA system. During
normal operating conditions and disturbances, the acquired knowledge will pro-
vide the engineers the ability to analyse the performance of the complex system
and execute future improvement