2N5550,2N5551 amplifier transistors NPN silicon.
This document describes the features of 2N5550 and 2N5551. You can check or search the characteristics of these two transistors by this document and decide which transistor you need.
C9012 amplifier transistors PNP silicon.
This document describes the features of C9012 PNP silicon. You can check or search the characteristics of this transistor by this document and decide whether the transistor you need.
Further, this document is described in Chinese.
12bit 低功耗DAC 數(shù)模轉(zhuǎn)換器
The MAX5302 combines a low-power, voltage-output,
12-bit digital-to-analog converter (DAC) and a precision
output amplifier in an 8-pin μMAX package. It operates
from a single +5V supply, drawing less than 280μA of
supply current.
High-Speed, Low-Power
Dual Operational amplifier
The AD826 features high output current drive capability of
50 mA min per amp, and is able to drive unlimited capacitive
loads. With a low power supply current of 15 mA max for both
amplifiers, the AD826 is a true general purpose operational
amplifier.
The AD826 is ideal for power sensitive applications such as video
cameras and portable instrumentation. The AD826 can operate
from a single +5 V supply, while still achieving 25 MHz of band
width. Furthermore the AD826 is fully specified from a single
+5 V to ±15 V power supplies.
The AD826 excels as an ADC/DAC buffer or active filter in
data acquisition systems and achieves a settling time of 70 ns
to 0.01%, with a low input offset voltage of 2 mV max. The
AD826 is available in small 8-lead plastic mini-DIP and SO
packages.
PRODUCT DESCRIPTION
The AD810 is a composite and HDTV compatible, current
feedback, video operational amplifier, ideal for use in systems
such as multimedia, digital tape recorders and video cameras.
The 0.1 dB flatness specification at bandwidth of 30 MHz
(G = +2) and the differential gain and phase of 0.02% and
0.04° (NTSC) make the AD810 ideal for any broadcast quality
video system. All these specifications are under load conditions
of 150 ? (one 75 ? back terminated cable).
The AD810 is ideal for power sensitive applications such as
video cameras, offering a low power supply current of 8.0 mA
max. The disable feature reduces the power supply current to
only 2.1 mA, while the amplifier is not in use, to conserve
power. Furthermore the AD810 is specified over a power supply
range of ±5 V to ±15 V.
transimpedance linearization circuitry. This allows it to drive
video loads with excellent differential gain and phase perfor
mance on only 50 mW of power. The AD8001 is a current
feedback amplifier and features gain flatness of 0.1 dB to 100 MHz
while offering differential gain and phase error of 0.01% and
0.025°. This makes the AD8001 ideal for professional video
electronics such as cameras and video switchers. Additionally,
the AD8001’s low distortion and fast settling make it ideal for
buffer high-speed A-to-D converters.
The AD8001 offers low power of 5.5 mA max (VS = ±5 V) and
can run on a single +12 V power supply, while being capable of
delivering over 70 mA of load current. These features make this
amplifier ideal for portable and battery-powered applications
where size and power are critical.
The outstanding bandwidth of 800 MHz along with 1200 V/μs
of slew rate make the AD8001 useful in many general purpose
high-speed applications where dual power supplies of up to ±6 V
and single supplies from 6 V to 12 V are needed. The AD8001 is
available in the industrial temperature range of –40°C to +85°C.
Radio frequency (RF) power amplifiers are used in everyday life for many applica-
tions including cellular phones, magnetic resonance imaging, semiconductor wafer
processing for chip manufacturing, etc. Therefore, the design and performance of
RF amplifiers carry great importance for the proper functionality of these devices.
Furthermore, several industrial and military applications require low-profile yet
high-powered and efficient power amplifiers.
An optical fiber amplifier is a key component for enabling efficient transmission of
wavelength-divisionmultiplexed(WDM)signalsoverlongdistances.Eventhough
many alternative technologies were available, erbium-doped fiber amplifiers won
theraceduringtheearly1990sandbecameastandardcomponentforlong-haulopti-
caltelecommunicationssystems.However,owingtotherecentsuccessinproducing
low-cost, high-power, semiconductor lasers operating near 1450 nm, the Raman
amplifiertechnologyhasalsogainedprominenceinthedeploymentofmodernlight-
wavesystems.Moreover,becauseofthepushforintegratedoptoelectroniccircuits,
semiconductor optical amplifiers, rare-earth-doped planar waveguide amplifiers,
and silicon optical amplifiers are also gaining much interest these days.