mp270app.dsp
This file (the project file) contains information at the project level and
is used to build a single project or subproject. Other users can share the
project (.dsp) file, but they should export the makefiles locally.
mp270app.cpp
This is the main application source file.
RCPServer.cpp
This the main application source file.
RCPServer.dsp
This file (the project file) contains information at the project level and
is used to build a single project or subproject. Other users can share the
project (.dsp) file, but they should export the makefiles locally.
WIN32 APPLICATION : gamegold
========================================================================
AppWizard has created this gamegold application for you.
This file contains a summary of what you will find in each of the files that
make up your gamegold application.
gamegold.cpp
This is the main application source file.
gamegold.dsp
This file (the project file) contains information at the project level and
is used to build a single project or subproject. Other users can share the
project (.dsp) file, but they should export the makefiles locally.
This publication represents the largest LTC commitmentto an application note to date. No other application noteabsorbed as much effort, took so long or cost so much.This level of activity is justified by our belief that high speedmonolithic amplifiers greatly interest users.
Radio Frequency Integrated Circuit Design
I enjoyed reading this book for a number of reasons. One reason is that itaddresses high-speed analog design in the context of microwave issues. This isan advanced-level book, which should follow courses in basic circuits andtransmission lines. Most analog integrated circuit designers in the past workedon applications at low enough frequency that microwave issues did not arise.As a consequence, they were adept at lumped parameter circuits and often notcomfortable with circuits where waves travel in space. However, in order todesign radio frequency (RF) communications integrated circuits (IC) in thegigahertz range, one must deal with transmission lines at chip interfaces andwhere interconnections on chip are far apart. Also, impedance matching isaddressed, which is a topic that arises most often in microwave circuits. In mycareer, there has been a gap in comprehension between analog low-frequencydesigners and microwave designers. Often, similar issues were dealt with in twodifferent languages. Although this book is more firmly based in lumped-elementanalog circuit design, it is nice to see that microwave knowledge is brought inwhere necessary.Too many analog circuit books in the past have concentrated first on thecircuit side rather than on basic theory behind their application in communications.The circuits usually used have evolved through experience, without asatisfying intellectual theme in describing them. Why a given circuit works bestcan be subtle, and often these circuits are chosen only through experience. Forthis reason, I am happy that the book begins first with topics that require anintellectual approach—noise, linearity and filtering, and technology issues. Iam particularly happy with how linearity is introduced (power series). In therest of the book it is then shown, with specific circuits and numerical examples,how linearity and noise issues arise.
Abstract: Some power architectures require the power supply sequencer (or system manager) to controldownstream power MOSFETs to allow power to flow into branch circuits. This application note explains howsystem power sequencing and level shifting can be accomplished using a low-voltage system manager
Abstract: Some types of loads require more current during startup than when running. Other loads can be limited to a lower-powercurrent during startup but require a higher operating current. This article describes an application circuit that automatically adjusts apower circuit’s overcurrent protection level up or down after startup is complete.