亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

balance-Bi-Tr

  • C# BigInteger class. BigInteger.cs is a csharp program. It is the BIgInteger class. It has methods:

    C# BigInteger class. BigInteger.cs is a csharp program. It is the BIgInteger class. It has methods: abs() , FermatLittleTest(int confidence) ,gcd(BigInteger bi) , genCoPrime(int bits, Random rand) , genPseudoPrime(int bits, int confidence, Random rand) , genRandomBits(int bits, Random rand) , isProbablePrime(int confidence) , isProbablePrime() , Jacobi(BigInteger a, BigInteger b) , LucasSequence(BigInteger P, BigInteger Q, BigInteger k, BigInteger n) ,max(BigInteger bi) , min(BigInteger bi) , modInverse(BigInteger modulus) , RabinMillerTest(int confidence) ,

    標簽: BigInteger class BIgInteger program

    上傳時間: 2013-12-23

    上傳用戶:ynzfm

  • <%@ LANGUAGE="VBSCRIPT" %> <!--#include file="util.asp" --> <% Head="您放入購物車的物品已經(jīng)全數(shù)

    <%@ LANGUAGE="VBSCRIPT" %> <!--#include file="util.asp" --> <% Head="您放入購物車的物品已經(jīng)全數(shù)退回!" Session("ProductList") = "" %> <html> <head> <meta http-equiv="Content-Type" content="text/html charset=gb2312"> <STYLE type=text/css>.main { FONT-SIZE: 9pt } .main1 { FONT-SIZE: 14px } </STYLE> <title>清空購物車</title> </head> <body topmargin="5" bgcolor="#E6E4C4"> <diiv align="center"><center> <table width="100%" border="0" class="table1" bordercolor="#62ACFF" cellspacing="0" class=main1> <tr> <td width="80%" valign="top"> <p align="center" class=main1><%=Head%></p> <p align="center"> <br><input type="button" value="關閉" name="B2" onclick="window.close() " style="font-size: 9pt"></td> </tr> </table> </center></div> </body> </html>

    標簽: lt LANGUAGE VBSCRIPT include

    上傳時間: 2015-11-05

    上傳用戶:zhaoq123

  • 問題描述:編寫一個JAVA程序

    問題描述:編寫一個JAVA程序,用面向?qū)ο笤O計的方法編寫一個電話卡的類。包括卡號、密碼、余額、撥入號碼等 b)基本要求:類的屬性有卡號、密碼、余額、撥入號碼,電話卡的常用操作可以用連接電話方法、返回余額方法與通電話方法來實現(xiàn)。 c)方法功能描述: 構造方法(PhoneCard(卡號,密碼,余額,撥入號碼))可以完成屬性值初始化賦值,并判斷余額,余額為負就退出系統(tǒng),請在構造方法中將初始時的連接置為false即表示沒有連接。 卡號long cardNumber 密碼private int password,余額double balance,撥入號碼string connectNumber boolean connected(一個布爾類型變量表示電話卡連接狀態(tài),初始時默認沒有連接,值為false,當調(diào)用連接電話方法()后,在判斷卡號和密碼相匹配后值置為true) 連接電話方法(performConnection(卡號,密碼))可以完成檢查卡號和密碼,它是只有在卡號和密碼相匹配時才連接 返回余額方法(getBalance())得到電話卡的余額 通電話方法(performDial())是模擬通過過程中,余額會不斷減少,每調(diào)用此方法,電話卡的余額減少0。5元,打一次電話調(diào)用一次

    標簽: JAVA 編寫 程序

    上傳時間: 2014-01-20

    上傳用戶:1109003457

  • 本文專門講解如何運用這種原始套接字

    本文專門講解如何運用這種原始套接字,來模擬I P的一些實用工具,比如Tr a c e r o u t e和P i n g程序等等。使用原始套接字,亦可對I P頭信息進行實際的操作。

    標簽: 如何運用 套接

    上傳時間: 2013-12-24

    上傳用戶:wqxstar

  • *--- --- --- --聲明--- --- --- -----*/ /* VC6.0下運行通過 此程序為本人苦心所做

    *--- --- --- --聲明--- --- --- -----*/ /* VC6.0下運行通過 此程序為本人苦心所做,請您在閱讀的時候,尊重本人的 勞動。可以修改,但當做的每一處矯正或改進時,請將改進 方案,及修改部分發(fā)給本人 (修改部分請注名明:修改字樣) Email: jink2005@sina.com QQ: 272576320 ——初稿完成:06-5-27 jink2005 補充: 程序存在問題: (1) follow集不能處理:U->xVyVz的情況 (2) 因本人偷懶,本程序為加入文法判斷,故 輸入的文法必須為LL(1)文法 (3) 您可以幫忙擴充:消除左遞歸,提取公因子等函數(shù) (4) …… */ /*-----------------------------------------------*/ /*參考書《計算機編譯原理——編譯程序構造實踐》 LL(1)語法分析,例1: ERTWF# +*()i# 文法G[E]:(按此格式輸入) 1 E -> TR 2 R -> +TR 3 R -> 4 T -> FW 5 W -> * FW 6 W -> 7 F -> (E) 8 F -> i 分析例句:i*(i)# , i+i# 例2: 編譯書5.6例題1 SHMA# adbe# S->aH H->aMd H->d M->Ab M-> A->aM A->e 分析例句:aaabd# */

    標簽: 6.0 VC 運行 程序

    上傳時間: 2016-02-08

    上傳用戶:ayfeixiao

  • 一個基于數(shù)據(jù)挖掘的圖書智能銷售系統(tǒng)

    一個基于數(shù)據(jù)挖掘的圖書智能銷售系統(tǒng),具有預測功能,同時能對客戶進行數(shù)據(jù)挖掘分析。 .net平臺,sql2005環(huán)境,必須安裝sql205 BI

    標簽: 數(shù)據(jù)挖掘 圖書 銷售

    上傳時間: 2016-03-15

    上傳用戶:Thuan

  • 人工智能的一個工具軟件

    人工智能的一個工具軟件,較為經(jīng)典,BI常用的推薦工具

    標簽: 人工智能 軟件

    上傳時間: 2016-03-30

    上傳用戶:四只眼

  • On-Line MCMC Bayesian Model Selection This demo demonstrates how to use the sequential Monte Carl

    On-Line MCMC Bayesian Model Selection This demo demonstrates how to use the sequential Monte Carlo algorithm with reversible jump MCMC steps to perform model selection in neural networks. We treat both the model dimension (number of neurons) and model parameters as unknowns. The derivation and details are presented in: Christophe Andrieu, Nando de Freitas and Arnaud Doucet. Sequential Bayesian Estimation and Model Selection Applied to Neural Networks . Technical report CUED/F-INFENG/TR 341, Cambridge University Department of Engineering, June 1999. After downloading the file, type "tar -xf version2.tar" to uncompress it. This creates the directory version2 containing the required m files. Go to this directory, load matlab5 and type "smcdemo1". In the header of the demo file, one can select to monitor the simulation progress (with par.doPlot=1) and modify the simulation parameters.

    標簽: demonstrates sequential Selection Bayesian

    上傳時間: 2016-04-07

    上傳用戶:lindor

  • This demo nstrates how to use the sequential Monte Carlo algorithm with reversible jump MCMC steps t

    This demo nstrates how to use the sequential Monte Carlo algorithm with reversible jump MCMC steps to perform model selection in neural networks. We treat both the model dimension (number of neurons) and model parameters as unknowns. The derivation and details are presented in: Christophe Andrieu, Nando de Freitas and Arnaud Doucet. Sequential Bayesian Estimation and Model Selection Applied to Neural Networks . Technical report CUED/F-INFENG/TR 341, Cambridge University Department of Engineering, June 1999. After downloading the file, type "tar -xf version2.tar" to uncompress it. This creates the directory version2 containing the required m files. Go to this directory, load matlab5 and type "smcdemo1". In the header of the demo file, one can select to monitor the simulation progress (with par.doPlot=1) and modify the simulation parameters.

    標簽: sequential reversible algorithm nstrates

    上傳時間: 2014-01-18

    上傳用戶:康郎

  • This demo nstrates the use of the reversible jump MCMC algorithm for neural networks. It uses a hier

    This demo nstrates the use of the reversible jump MCMC algorithm for neural networks. It uses a hierarchical full Bayesian model for neural networks. This model treats the model dimension (number of neurons), model parameters, regularisation parameters and noise parameters as random variables that need to be estimated. The derivations and proof of geometric convergence are presented, in detail, in: Christophe Andrieu, Nando de Freitas and Arnaud Doucet. Robust Full Bayesian Learning for Neural Networks. Technical report CUED/F-INFENG/TR 343, Cambridge University Department of Engineering, May 1999. After downloading the file, type "tar -xf rjMCMC.tar" to uncompress it. This creates the directory rjMCMC containing the required m files. Go to this directory, load matlab5 and type "rjdemo1". In the header of the demo file, one can select to monitor the simulation progress (with par.doPlot=1) and modify the simulation parameters.

    標簽: reversible algorithm the nstrates

    上傳時間: 2014-01-08

    上傳用戶:cuibaigao

主站蜘蛛池模板: 资源县| 苍梧县| 亚东县| 庐江县| 富平县| 佛坪县| 腾冲县| 永春县| 三亚市| 义乌市| 汨罗市| 夏河县| 军事| 类乌齐县| 莎车县| 镇康县| 滦平县| 郎溪县| 闽侯县| 永康市| 新丰县| 米泉市| 静海县| 吉安县| 鄂温| 蒙城县| 巫山县| 甘德县| 自贡市| 梨树县| 阿尔山市| 嘉鱼县| 女性| 林周县| 沅陵县| 南和县| 彝良县| 锦州市| 北流市| 乾安县| 广昌县|