transimpedance linearization circuitry. This allows it to drive
video loads with excellent differential gain and phase perfor
mance on only 50 mW of power. The AD8001 is a current
feedback amplifier and features gain flatness of 0.1 dB to 100 MHz
while offering differential gain and phase error of 0.01% and
0.025°. This makes the AD8001 ideal for professional video
electronics such as cameras and video switchers. Additionally,
the AD8001’s low distortion and fast settling make it ideal for
buffer high-speed A-to-D converters.
The AD8001 offers low power of 5.5 mA max (VS = ±5 V) and
can run on a single +12 V power supply, while being capable of
delivering over 70 mA of load current. These features make this
amplifier ideal for portable and battery-powered applications
where size and power are critical.
The outstanding bandwidth of 800 MHz along with 1200 V/μs
of slew rate make the AD8001 useful in many general purpose
high-speed applications where dual power supplies of up to ±6 V
and single supplies from 6 V to 12 V are needed. The AD8001 is
available in the industrial temperature range of –40°C to +85°C.
Recently millimeter-wave bands have been postu-
lated as a means to accommodate the foreseen extreme bandwidth
demands in vehicular communications, which result from the
dissemination of sensory data to nearby vehicles for enhanced
environmental awareness and improved safety level. However, the
literature is particularly scarce in regards to principled resource
allocation schemes that deal with the challenging radio conditions
posed by the high mobility of vehicular scenarios
Recently millimeter-wave bands have been postu-
lated as a means to accommodate the foreseen extreme bandwidth
demands in vehicular communications, which result from the
dissemination of sensory data to nearby vehicles for enhanced
environmental awareness and improved safety level.
In recent years, cellular voice networks have transformed into powerful packet-switched
access networks for both voice communication and Internet access. Evolving Universal
Mobile Telecommunication System (UMTS) networks and first Long Term Evolution
(LTE) installations now deliver bandwidths of several megabits per second to individual
users, and mobile access to the Internet from handheld devices and notebooks is no
longer perceived as slower than a Digital Subscriber Line (DSL) or cable connection.
bandwidth and capacity demands, however, keep rising because of the increasing number
of people using the networks and because of bandwidth-intensive applications such as
video streaming. Thus, network manufacturers and network operators need to find ways
to continuously increase the capacity and performance of their cellular networks while
reducing the cost.
Mobile communication devices like smart phones or tablet PCs enable us to
consume information at every location and at every time. The rapid development
of new applications and new services and the demand to access data in real time
create an increasing throughput demand. The data have to be transmitted reliably
to ensure the desired quality of service. Furthermore, an improved utilization of
the bandwidth is desired to reduce the cost of transmission.
Traditional modulation methods adopted by space agencies for transmit-
ting telecommand and telemetry data have incorporated subcarriers as a sim-
ple means of separating different data types as well ensuring no overlap
between the radio frequency (RF) carrier and the modulated data’s frequency
spectra.
Cognitive radio has emerged as a promising technology for maximizing the utiliza-
tion of the limited radio bandwidth while accommodating the increasing amount of
services and applications in wireless networks. A cognitive radio (CR) transceiver
is able to adapt to the dynamic radio environment and the network parameters to
maximize the utilization of the limited radio resources while providing flexibility in
wireless access. The key features of a CR transceiver are awareness of the radio envi-
ronment (in terms of spectrum usage, power spectral density of transmitted/received
signals, wireless protocol signaling) and intelligence.
During the past decade, many wireless communication techniques have been
developedto achievevariousgoals suchas higherdata rate,morerobustlink quality,
and higher number of users in a given bandwidth. For wireless communication
systems, depending on the availability of a feedback link, two approaches can be
considered: namely open and closed loop. Open loop communication system that
does not exploit the channel knowledge at the transmitter is now well understood
from both a theoretical and practical point of view.
This book presents millimeter wave communication system design and analysis at the
level to produce an understanding of the interaction between a wireless system and its
front end so that the overall performance can be predicted. Gigabit wireless commu-
nications require a considerable amount of bandwidth, which can be supported by
millimeter waves. Millimeter wave technology has come of age, and at the time of
writing the standards of IEEE 802.15.3c, WiGig, Wireless HD TM , and the European
Computer Manufacturers Association have recently been finalized.
Wireless metropolitan area networks (WirelessMANs) is emerging as a promising
broadband wireless access (BWA) technology to provide high-speed, high bandwidth
efficiency and high-capacity multimedia services for residential as well as enterprise
applications. It is observed that WirelessMAN (e.g., WiMAX) is even regarded as a 4G
technology. For the success of the WirelessMANs, international standardization organiza-
tions are very actively specifying the standards IEEE 802.16, ETSI HiperMAN and Korea
WiBro.