The recent developments in full duplex (FD) commu-
nication promise doubling the capacity of cellular networks using
self interference cancellation (SIC) techniques. FD small cells
with device-to-device (D2D) communication links could achieve
the expected capacity of the future cellular networks (5G). In
this work, we consider joint scheduling and dynamic power
algorithm (DPA) for a single cell FD small cell network with
D2D links (D2DLs). We formulate the optimal user selection and
power control as a non-linear programming (NLP) optimization
problem to get the optimal user scheduling and transmission
power in a given TTI. Our numerical results show that using
DPA gives better overall throughput performance than full power
transmission algorithm (FPA). Also, simultaneous transmissions
(combination of uplink (UL), downlink (DL), and D2D occur
80% of the time thereby increasing the spectral efficiency and
network capacity
With this book at your fingertips, you, the reader, and I have something in common. We share
the same interest in mobile radio channels. This area attracted my interest first in autumn 1992
whenImovedfromindustrytoacademiatofindachallengeinmylifeandtopursueascientific
career. Since then, I consider myself as a student of the mobile radio channel who lives for
modelling, analyzing, and simulating them. While the first edition of this book resulted from
my teaching and research activities at the Technical University of Hamburg-Harburg (TUHH),
Germany, the present second edition is entirely an outcome of my work at the University of
Agder, Norway.
All wireless communication standards, existing and under development, adopt or
consider adopting orthogonal frequency-division multiplexing (OFDM) as the
modulation technique. It is clear that OFDM has become the definitive modulation
scheme in current and future wireless communication systems.
The serious study of the practice of how to determine the appropriate content of a
specification is a seldom-appreciated pastime. Those who have the responsibility to
design a product would prefer a greater degree of freedom than permitted by the con-
tent of a specification. Many of those who would manage those who would design
a product would prefer to allocate all of the project funding and schedule to what
they consider more productive labor. These are the attitudes, of course, that doom a
project to defeat but they are hard to counter no matter how many times repeated by
design engineers and managers. A system engineer who has survived a few of these
experiences over a long career may retire and forget the past but we have an endur-
ing obligation to work toward changing these attitudes while trying to offer younger
system engineers a pathway toward a more sure success in requirements analysis and
specification publishing.
The use of optical free-space emissions to provide indoor wireless commu-
nications has been studied extensively since the pioneering work of Gfeller
and Bapst in 1979 [1]. These studies have been invariably interdisciplinary in-
volving such far flung areas such as optics design? indoor propagation studies?
electronics design? communications systems design among others. The focus
of this text is on the design of communications systems for indoor wireless
optical channels. Signalling techniques developed for wired fibre optic net-
works are seldom efficient since they do not consider the bandwidth restricted
nature of the wireless optical channel.
This effort started as an answer to the numerous questions the authors have
repeatedly had to answer about electrostatic discharge (ESD) protection and
input/output (1/0) designs. In the past no comprehensive book existed suffi-
ciently covering these areas, and these topics were rarely taught in engineering
schools. Thus first-time I/O and ESD protection designers have had consider-
able trouble getting started. This book is in part an answer to such needs.
In this age of science and technology, the global economy has developed so much that our
lifestyles are now extremely modernized and developed. In some ways, modern society
seems to have reached the utmost state of advancement in various areas, including eco-
nomic development, science and technology pursuit, and the utilization of the given nat-
ural environment. However, it is important to consider approaches that may allow human
beings to stay longer on the Earth while enjoying fulfilling and peaceful daily lives.
The author of this textbook intends to consider all stages of the life cycle of the
energy resources: extraction of mineral energy resources and mastering for power
engineering renewable energy, transportation of mineral energy raw materials to the
place of consumption, the conversion of primary energy sources into electrical
and/or thermal energy, transportation and distribution among the customers, and
energy storage (if necessary).
This chapter surveys the high temperature and oxygen partial pressure
behavior of complex oxide heterostructures as determined by in situ synchrotron
X-ray methods. We consider both growth and post-growth behavior, emphasizing
the observation of structural and interfacial defects relevant to the size-dependent
properties seen in these systems.
LIKE SO MANY OTHERS , THIS BOOK WAS WRITTEN BECAUSE WE COULDN ’ T FIND ONE LIKE IT . We
needed something to hand to all of those people who have come to us asking for “a good
book to read on RFID.” When we looked for candidates we found some great books, but
most were aimed at electrical engineers or top-level managers, with very little for those of
us who are in between. This book is for developers, system and software architects, and
project managers, as well as students and professionals in all of the industries impacted by
Radio Frequency Identification (RFID) who want to understand how this technology
works. As the title suggests, this book is about RFID in general and not just the most
recent developments; however, because so much is going on in the area of RFID for the
supply chain and especially the Electronic Product Code (EPC), we have devoted consider-
able space to these topics. Regardless of the type of RFID work you may be doing, we
think you will find something useful here.