The FPGA can realize a more optimized Digital controller in DC/DC Converters when compare to DSPs. In this paper, based on the FPGA platform, The theoretical analysis, characteristics, simulation and design consideration are given. The methods to implement the digital DC/DC Converters have been researched. The function module, state machine of digital DC/DC controller and high resolution DPWM with Sigma-
Delta dither has been introduced. They are verified by experiments on a 20 W, 300 KHz non-isolated synchronous buck converters.
The purpose of this application note is to show an example of how a digital potentiometer can be used in thefeedback loop of a step-up DC-DC converter to provide calibration and/or adjustment of the output voltage.The example circuit uses a MAX5025 step-up DC-DC converter (capable of generating up to 36V,120mWmax) in conjunction with a DS1845, 256 position, NV digital potentiometer. For this example, the desiredoutput voltage is 32V, which is generated from an input supply of 5V. The output voltage can be adjusted in35mV increments (near 32V) and span a range wide enough to account for resistance, potentiometer and DCDCconverter tolerances (27.6V to 36.7V).
Advancements in board assembly, PCB layout anddigital IC integration have produced a new generationof densely populated, high performance systems. Theboard-mounted point-of-load (POL) DC/DC power suppliesin these systems are subject to the same demandingsize, high power and performance requirements asother subsystems. The rigorous new POL demands aredifficult to meet with traditional controller or regulatorICs, or power modules.