亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

dimension

dimension是Java的一個(gè)類,封裝了一個(gè)構(gòu)件的高度和寬度。
  • From the Publisher Focus on 2D in Direct3D? teaches you all of the tools and tips you ll need to di

    From the Publisher Focus on 2D in Direct3D? teaches you all of the tools and tips you ll need to dive right in and begin creating your own games. If you have some knowledge of C or C++ and have been searching for a guide that will take your 2D programming into the third dimension, then search no more! In this book you ll learn the skills you ll need to move from the 2D API to Direct3D. Written from the point of view of a 2D programmer, Focus on 2D in Direct3D presents the fundamentals of the Direct3D API in an easy-to-use-and-understand format. Get ready to jump into the world of Direct3D!

    標(biāo)簽: the Publisher you teaches

    上傳時(shí)間: 2015-09-01

    上傳用戶:ve3344

  • support vector classification machine % soft margin % uses "kernel.m" % % xtrain: (Ltrain,N) wit

    support vector classification machine % soft margin % uses "kernel.m" % % xtrain: (Ltrain,N) with Ltrain: number of points N: dimension % ytrain: (Ltrain,1) containing class labels (-1 or +1) % xrun: (Lrun,N) with Lrun: number of points N: dimension % atrain: alpha coefficients (from svcm_train on xtrain and ytrain) % btrain: offest coefficient (from svcm_train on xtrain and ytrain) % % ypred: predicted y (Lrun,1) containing class labels (-1 or +1) % margin: (signed) separation from the separating hyperplane (Lrun,1

    標(biāo)簽: classification support machine Ltrain

    上傳時(shí)間: 2015-09-04

    上傳用戶:問題問題

  • function y_cum = cum2x (x,y, maxlag, nsamp, overlap, flag) %CUM2X Cross-covariance % y_cum = cum2x

    function y_cum = cum2x (x,y, maxlag, nsamp, overlap, flag) %CUM2X Cross-covariance % y_cum = cum2x (x,y,maxlag, samp_seg, overlap, flag) % x,y - data vectors/matrices with identical dimensions % if x,y are matrices, rather than vectors, columns are % assumed to correspond to independent realizations, % overlap is set to 0, and samp_seg to the row dimension. % maxlag - maximum lag to be computed [default = 0] % samp_seg - samples per segment [default = data_length] % overlap - percentage overlap of segments [default = 0] % overlap is clipped to the allowed range of [0,99].

    標(biāo)簽: cum2x y_cum Cross-covariance function

    上傳時(shí)間: 2015-09-08

    上傳用戶:xieguodong1234

  • Fractal Explorer GUI-based program for exploring and studying the most common form of fractals, c

    Fractal Explorer GUI-based program for exploring and studying the most common form of fractals, chaotic systems and fractional dimension systems

    標(biāo)簽: GUI-based exploring Explorer fractals

    上傳時(shí)間: 2013-11-25

    上傳用戶:ljmwh2000

  • On-Line MCMC Bayesian Model Selection This demo demonstrates how to use the sequential Monte Carl

    On-Line MCMC Bayesian Model Selection This demo demonstrates how to use the sequential Monte Carlo algorithm with reversible jump MCMC steps to perform model selection in neural networks. We treat both the model dimension (number of neurons) and model parameters as unknowns. The derivation and details are presented in: Christophe Andrieu, Nando de Freitas and Arnaud Doucet. Sequential Bayesian Estimation and Model Selection Applied to Neural Networks . Technical report CUED/F-INFENG/TR 341, Cambridge University Department of Engineering, June 1999. After downloading the file, type "tar -xf version2.tar" to uncompress it. This creates the directory version2 containing the required m files. Go to this directory, load matlab5 and type "smcdemo1". In the header of the demo file, one can select to monitor the simulation progress (with par.doPlot=1) and modify the simulation parameters.

    標(biāo)簽: demonstrates sequential Selection Bayesian

    上傳時(shí)間: 2016-04-07

    上傳用戶:lindor

  • This demo nstrates how to use the sequential Monte Carlo algorithm with reversible jump MCMC steps t

    This demo nstrates how to use the sequential Monte Carlo algorithm with reversible jump MCMC steps to perform model selection in neural networks. We treat both the model dimension (number of neurons) and model parameters as unknowns. The derivation and details are presented in: Christophe Andrieu, Nando de Freitas and Arnaud Doucet. Sequential Bayesian Estimation and Model Selection Applied to Neural Networks . Technical report CUED/F-INFENG/TR 341, Cambridge University Department of Engineering, June 1999. After downloading the file, type "tar -xf version2.tar" to uncompress it. This creates the directory version2 containing the required m files. Go to this directory, load matlab5 and type "smcdemo1". In the header of the demo file, one can select to monitor the simulation progress (with par.doPlot=1) and modify the simulation parameters.

    標(biāo)簽: sequential reversible algorithm nstrates

    上傳時(shí)間: 2014-01-18

    上傳用戶:康郎

  • This demo nstrates the use of the reversible jump MCMC algorithm for neural networks. It uses a hier

    This demo nstrates the use of the reversible jump MCMC algorithm for neural networks. It uses a hierarchical full Bayesian model for neural networks. This model treats the model dimension (number of neurons), model parameters, regularisation parameters and noise parameters as random variables that need to be estimated. The derivations and proof of geometric convergence are presented, in detail, in: Christophe Andrieu, Nando de Freitas and Arnaud Doucet. Robust Full Bayesian Learning for Neural Networks. Technical report CUED/F-INFENG/TR 343, Cambridge University Department of Engineering, May 1999. After downloading the file, type "tar -xf rjMCMC.tar" to uncompress it. This creates the directory rjMCMC containing the required m files. Go to this directory, load matlab5 and type "rjdemo1". In the header of the demo file, one can select to monitor the simulation progress (with par.doPlot=1) and modify the simulation parameters.

    標(biāo)簽: reversible algorithm the nstrates

    上傳時(shí)間: 2014-01-08

    上傳用戶:cuibaigao

  • Creates a Gaussian mixture model with specified architecture.MIX = GMM(DIM, NCENTRES, COVARTYPE) tak

    Creates a Gaussian mixture model with specified architecture.MIX = GMM(DIM, NCENTRES, COVARTYPE) takes the dimension of the space DIM, the number of centres in the mixture model and the type of the mixture model, and returns a data structure MIX.

    標(biāo)簽: architecture COVARTYPE specified Gaussian

    上傳時(shí)間: 2016-04-28

    上傳用戶:dyctj

  • Probabilistic Principal Components Analysis. [VAR, U, LAMBDA] = PPCA(X, PPCA_DIM) computes the princ

    Probabilistic Principal Components Analysis. [VAR, U, LAMBDA] = PPCA(X, PPCA_DIM) computes the principal % component subspace U of dimension PPCA_DIM using a centred covariance matrix X. The variable VAR contains the off-subspace variance (which is assumed to be spherical), while the vector LAMBDA contains the variances of each of the principal components. This is computed using the eigenvalue and eigenvector decomposition of X.

    標(biāo)簽: Probabilistic Components Principal Analysis

    上傳時(shí)間: 2016-04-28

    上傳用戶:qb1993225

  • % EM algorithm for k multidimensional Gaussian mixture estimation % % Inputs: % X(n,d) - input da

    % EM algorithm for k multidimensional Gaussian mixture estimation % % Inputs: % X(n,d) - input data, n=number of observations, d=dimension of variable % k - maximum number of Gaussian components allowed % ltol - percentage of the log likelihood difference between 2 iterations ([] for none) % maxiter - maximum number of iteration allowed ([] for none) % pflag - 1 for plotting GM for 1D or 2D cases only, 0 otherwise ([] for none) % Init - structure of initial W, M, V: Init.W, Init.M, Init.V ([] for none) % % Ouputs: % W(1,k) - estimated weights of GM % M(d,k) - estimated mean vectors of GM % V(d,d,k) - estimated covariance matrices of GM % L - log likelihood of estimates %

    標(biāo)簽: multidimensional estimation algorithm Gaussian

    上傳時(shí)間: 2013-12-03

    上傳用戶:我們的船長

亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美精品色一区二区三区| 欧美日韩亚洲不卡| 国产精品一区二区三区久久| 欧美在线综合视频| 亚洲精品视频在线观看网站| 国产在线欧美日韩| 欧美肉体xxxx裸体137大胆| 久久精品国产一区二区三区免费看 | 欧美一级二区| 一区二区三区www| 日韩午夜在线电影| 亚洲日韩欧美视频一区| 亚洲福利国产| 在线播放精品| 亚洲国产高清视频| 亚洲丰满少妇videoshd| 欧美日韩成人一区| 欧美精品啪啪| 欧美大片在线影院| 欧美大尺度在线观看| 裸体歌舞表演一区二区| 久久国产视频网| 欧美一区二区三区视频免费播放 | 国产午夜精品久久久久久免费视 | 欧美本精品男人aⅴ天堂| 久久精品国产清高在天天线| 久久精品国产亚洲精品| 欧美怡红院视频| 亚洲女同在线| 久久国内精品自在自线400部| 亚洲一区日韩| 欧美在线视频一区| 久久久精品日韩欧美| 久久免费偷拍视频| 久久久久国产成人精品亚洲午夜| 欧美有码在线观看视频| 久久久久国内| 欧美电影免费观看网站| 欧美精品成人一区二区在线观看| 欧美剧在线免费观看网站| 欧美性做爰猛烈叫床潮| 国产精自产拍久久久久久蜜| 国产精品最新自拍| 好男人免费精品视频| 亚洲第一页自拍| 亚洲美女中文字幕| 亚洲欧美精品在线| 久久久精品日韩| 欧美日韩精品二区| 国产精品美女999| 影音先锋中文字幕一区二区| 亚洲精品视频在线观看网站| 亚洲欧美日韩国产综合| 久久综合精品一区| 欧美手机在线| 激情视频一区二区| 亚洲一区在线观看视频| 久久久噜噜噜久久久| 欧美视频免费| 伊人狠狠色j香婷婷综合| 亚洲免费不卡| 欧美在线影院| 欧美日韩爆操| 欲香欲色天天天综合和网| 日韩一区二区免费看| 久久久久久伊人| 国产精品久久77777| 亚洲国产91| 亚洲欧美一区二区激情| 免费欧美在线| 国产视频丨精品|在线观看| 一本色道久久综合亚洲精品高清| 久久久久久电影| 国产乱码精品1区2区3区| 日韩午夜在线视频| 午夜精品久久久久久久男人的天堂| 狂野欧美激情性xxxx| 国产一区二区三区精品久久久| 亚洲午夜91| 欧美日韩国产一级| 亚洲激情另类| 欧美88av| 亚洲黄色免费电影| 欧美va亚洲va国产综合| 亚洲第一中文字幕| 麻豆91精品91久久久的内涵| 国产精品入口夜色视频大尺度| 亚洲免费精彩视频| 欧美 日韩 国产一区二区在线视频| 国产精品综合网站| 亚洲欧美一区二区激情| 欧美性猛交xxxx乱大交退制版| 99精品福利视频| 欧美日韩视频在线一区二区| 99精品国产在热久久| 欧美日韩国产999| 亚洲精品一区二区三区樱花| 欧美激情第一页xxx| 99国产精品国产精品久久 | 欧美国产乱视频| 一区二区在线免费观看| 老司机精品导航| 亚洲激情国产| 欧美mv日韩mv国产网站| 亚洲精品一区中文| 欧美视频在线观看| 亚洲男人的天堂在线观看| 国产精品欧美日韩一区二区| 亚洲宅男天堂在线观看无病毒| 国产欧美日韩不卡| 老牛影视一区二区三区| 亚洲日本电影在线| 欧美区亚洲区| 亚洲综合色激情五月| 国产午夜精品理论片a级大结局| 久久精品视频在线| 亚洲人成网站999久久久综合| 欧美日韩精品一区二区三区四区| 亚洲视频免费| 国产一区二区激情| 男同欧美伦乱| 中国成人黄色视屏| 国产亚洲欧美一区| 欧美福利电影网| 亚洲视频观看| 红桃视频一区| 欧美日韩三级在线| 久久成人免费| 亚洲伦理自拍| 国产亚洲精品综合一区91| 欧美一区二区日韩一区二区| 狠狠色噜噜狠狠狠狠色吗综合| 欧美a级片网站| 亚洲综合三区| 激情综合自拍| 欧美日韩在线第一页| 久久av一区二区三区漫画| 亚洲人在线视频| 国产精品亚洲激情| 欧美国产一区在线| 欧美亚洲一区| 999在线观看精品免费不卡网站| 国产日韩欧美一区二区| 欧美日本精品| 久久久蜜桃一区二区人| 亚洲视频在线观看三级| 亚洲第一色在线| 国产精品美女久久福利网站| 欧美99在线视频观看| 欧美一区二区| 一本色道久久| 亚洲国产精品成人综合| 国产一区清纯| 国产精品欧美一区二区三区奶水| 欧美成人精品在线视频| 久久国内精品自在自线400部| 一本到高清视频免费精品| 精品成人一区二区| 国产乱码精品一区二区三区不卡 | 国产日韩精品在线观看| 欧美精品一区二区三区一线天视频| 久久精品在线视频| 亚洲欧美国产77777| 9久草视频在线视频精品| 亚洲黑丝在线| 亚洲国产欧美一区二区三区久久 | 久久综合久久综合这里只有精品| 亚洲欧美国产精品桃花| 最近看过的日韩成人| 一区在线免费| 国模套图日韩精品一区二区| 国产精品sss| 欧美日韩精品综合| 欧美国产成人在线| 久久天堂成人| 久久久久久噜噜噜久久久精品| 亚洲欧美日韩一区二区在线| 亚洲一二区在线| 在线亚洲电影| 在线亚洲一区| 亚洲女同精品视频| 午夜综合激情| 欧美在线3区| 欧美一区二区在线视频| 亚洲一区视频| 午夜精品福利一区二区蜜股av| 亚洲欧美日韩成人| 亚洲欧美99| 久久成人羞羞网站| 久久久午夜电影| 欧美77777| 欧美全黄视频| 国产精品毛片一区二区三区| 国产精品人人做人人爽人人添 | 国产在线观看一区| 国内久久视频| 亚洲丰满在线| 日韩一级二级三级| 亚洲永久精品国产| 欧美一区二区在线观看|