為了在CDMA系統中更好地應用QDPSK數字調制方式,在分析四相相對移相(QDPSK)信號調制解調原理的基礎上,設計了一種QDPSK調制解調電路,它包括串并轉換、差分編碼、四相載波產生和選相、相干解調、差分譯碼和并串轉換電路。在MAX+PLUSⅡ軟件平臺上,進行了編譯和波形仿真。綜合后下載到復雜可編程邏輯器件EPM7128SLC84-15中,測試結果表明,調制電路能正確選相,解調電路輸出數據與QDPSK調制輸入數據完全一致,達到了預期的設計要求。
Abstract:
In order to realize the better application of digital modulation mode QDPSK in the CDMA system, a sort of QDPSK modulation-demodulation circuit was designed based on the analysis of QDPSK signal modulation-demodulation principles. It included serial/parallel conversion circuit, differential encoding circuit, four-phase carrier wave produced and phase chosen circuit, coherent demodulation circuit, difference decoding circuit and parallel/serial conversion circuit. And it was compiled and simulated on the MAX+PLUSⅡ software platform,and downloaded into the CPLD of EPM7128SLC84-15.The test result shows that the modulation circuit can exactly choose the phase,and the output data of the demodulator circuit is the same as the input data of the QDPSK modulate. The circuit achieves the prospective requirement of the design.
為了在CDMA系統中更好地應用QDPSK數字調制方式,在分析四相相對移相(QDPSK)信號調制解調原理的基礎上,設計了一種QDPSK調制解調電路,它包括串并轉換、差分編碼、四相載波產生和選相、相干解調、差分譯碼和并串轉換電路。在MAX+PLUSⅡ軟件平臺上,進行了編譯和波形仿真。綜合后下載到復雜可編程邏輯器件EPM7128SLC84-15中,測試結果表明,調制電路能正確選相,解調電路輸出數據與QDPSK調制輸入數據完全一致,達到了預期的設計要求。
Abstract:
In order to realize the better application of digital modulation mode QDPSK in the CDMA system, a sort of QDPSK modulation-demodulation circuit was designed based on the analysis of QDPSK signal modulation-demodulation principles. It included serial/parallel conversion circuit, differential encoding circuit, four-phase carrier wave produced and phase chosen circuit, coherent demodulation circuit, difference decoding circuit and parallel/serial conversion circuit. And it was compiled and simulated on the MAX+PLUSⅡ software platform,and downloaded into the CPLD of EPM7128SLC84-15.The test result shows that the modulation circuit can exactly choose the phase,and the output data of the demodulator circuit is the same as the input data of the QDPSK modulate. The circuit achieves the prospective requirement of the design.
WHAT MIME64 IS: MIME64 is an encoding described in RFC1341 as MIME base64.Its purpose is to encode binary files into ASCII so that they may be passedthrough e-mail gates. In this regard, MIME64 is similar to UUENCODE.Although most binaries these days are transmitted using UUENCODE, Ihave seen a few using MIME64, and I have had requests from friends thatI decode MIME64 files that have fallen into their hands. As long assome MIME64 continues to exist, a package such as this one is usefulto have.
Decoding most of the infrared signals can be easily
handled by PIC16C5X microcontrollers. This application
note describes how this decoding may be done.
The only mandatory hardware for decoding IR signals
is an infrared receiver. The use of two types is
described here. Both are modular types used often by
the consumer electronics industry. The first type
responds to infrared signals modulated at about
40 kHz. The second responds to non-modulated infrared
pulses and has a restricted range. The hardware
costs of each approach will be less than two dollars.
The decoding algorithm used in RBDS.c is based on error trapping. The program emulates the operation of the encoder and decoder of a binary cyclic codes, using bitwise shifts and xor for modulo g(x) operations.