基于通用集成運算放大器,利用MASON公式設(shè)計了一個多功能二階通用濾波器,能同時或分別實現(xiàn)低通、高通和帶通濾波,也能設(shè)計成一個正交振蕩器。電路的極點頻率和品質(zhì)因數(shù)能夠獨立、精確地調(diào)節(jié)。電路使用4個集成運放、2個電容和11個電阻,所有集成運放的反相端虛地。利用計算機仿真電路的通用濾波功能、極點頻率和品質(zhì)因數(shù)的獨立控制和正交正弦振蕩,從而證明該濾波器正確有效。
Abstract:
A new multifunctional second-order filter based on OPs was presented by MASON formula. Functions, such as high-pass, band-pass, low-pass filtering, can be realized respectively and simultaneously, and can become a quadrature oscillator by modifying resistance ratio. Its pole angular frequency and quality factor can be tuned accurately and independently. The circuit presented contains four OPs, two capacitors, and eleven resistances, and inverting input of all OPs is virtual ground. Its general filtering, the independent control of pole frequency and quality factor and quadrature sinusoidal oscillation were simulated by computer, and the result shows that the presented circuit is valid and effective.
在Multisim 10軟件環(huán)境下,設(shè)計一種由運算放大器構(gòu)成的精確可控矩形波信號發(fā)生器,結(jié)合系統(tǒng)電路原理圖重點闡述了各參數(shù)指標(biāo)的實現(xiàn)與測試方法。通過改變RC電路的電容充、放電路徑和時間常數(shù)實現(xiàn)了占空比和頻率的調(diào)節(jié),通過多路開關(guān)投入不同數(shù)值的電容實現(xiàn)了頻段的調(diào)節(jié),通過電壓取樣和同相放大電路實現(xiàn)了輸出電壓幅值的調(diào)節(jié)并提高了電路的帶負(fù)載能力,可作為頻率和幅值可調(diào)的方波信號發(fā)生器。Multisim 10仿真分析及應(yīng)用電路測試結(jié)果表明,電路性能指標(biāo)達到了設(shè)計要求。
Abstract:
Based on Multisim 10, this paper designed a kind of rectangular-wave signal generator which could be controlled exactly composed of operational amplifier, the key point was how to implement and test the parameter indicators based on the circuit diagram. The duty and the frequency were adjusted by changing the time constant and the way of charging and discharging of the capacitor, the width of frequency was adjusted by using different capacitors provided with multiple switch, the amplitude of output voltage was adjusted by sampling voltage and using in-phase amplifier circuit,the ability of driving loads was raised, the circuit can be used as squarewave signal generator whose frequency and amplitude can be adjusted. The final simulation results of Multisim 10 and the tests of applicable circuit show that the performance indicators of the circuit meets the design requirements.
This application note discusses a variety of approaches for interfacing analog signals to 5V powered systems. Synthesizing a "rail-to-rail" op amp and scaling techniques for A/D converters are covered. A voltage-to-frequency converter, applicable where high resolution is required, is also presented.
Random Number Generators(隨機數(shù)生成)包括gaussian random number generator、uniform random number generator、low-frequency hold generator、1/f noise generator等5種隨機信號生成的c源代碼
Routine mampres: To obtain amplitude response from h(exp(jw)).
input parameters:
h :n dimensioned complex array. the frequency response is stored
in h(0) to h(n-1).
n :the dimension of h and amp.
fs :sampling frequency (Hz).
iamp:If iamp=0: The Amplitude Res. amp(k)=abs(h(k))
If iamp=1: The Amplitude Res. amp(k)=20.*alog10(abs(h(k))).
output parameters:
amp :n dimensioned real array. the amplitude-frequency response is
stored in amp(0) to amp(n-1).
Note:
this program will generate a data file "filename.dat" .
in chapter 2
Rotating shafts experience a an elliptical motion called whirl. It is important to decompose this motion into a forward and backward whil orbits. The current function makes use of two sensors to generate a bi-directional spectrogram. The method can be extended to any time-frequency distribution
%
% compute the forward/backward Campbell/specgtrogram
%
% INPUT:
% y (n x 2) each column is measured from a different sensor
% ///////
% __
% |s1| y(:,1)
% |__|
% __
% / \ ________|/
% | | | s2 |/ y(:,2)
% \____/ --------|/
%
% Fs Sampling frequnecy
%
% OUTPUT:
% B spectrogram/Campbel diagram
% x x-axis coordinate vector (time or Speed)
% y y-axis coordinate vector (frequency [Hz])
his project was built and tested with WinAVR-20060125.
Make sure the MCU target define in the Makefiles corresponds to the AVR you are using!!
To build the code, just install WinAVR and run "make" from the console in echomaster and
echoslave subdirs.
"make program" will program the device if you have a AVRISP attached.
Remember to set the AVR device to at least 8MHz. The AVR may use the programmable clock
from MC1319x, just remember to check if the MC1319x and SPI communication is working FIRST!
Otherwise you wont get any clock signal to the AVR and then you can t program it or reset
the fuses!
The MC1319x has default clock output of 32kHz so you will have to set your programmer to
a very low frequency (<=32kHz/4) to be able to program it while it is running on that!