This application note provides step-by-step instructions on how to recreate a Tri-Mode Ethernet(TEMAC) performance testing system using the ML405 board and MontaVista Linux 4.0. Thisapplication note shows how to set up a simple EDK Base System Builder system on the ML405Evaluation Platform and run performance tests. The network architecture for the test isdescribed. A system is built and downloaded into the FPGA. A MontaVista Linux kernel isconfigured, built, and downloaded into the ML405 Evaluation Platform. The instructions forobtaining and setting up the software used to perform the measurements, netperf, are given.
With the Altera Nios II embedded processor, you as the system designercan accelerate time-critical software algorithms by adding custominstructions to the Nios II processor instruction set. Using custominstructions, you can reduce a complex sequence of standard instructionsto a single instruction implemented in hardware. You can use this featurefor a variety of applications, for example, to optimize software innerloops for digital signal processing (DSP), packet header processing, andcomputation-intensive applications. The Nios II configuration wizard,part of the Quartus® II software’s SOPC Builder, provides a graphicaluser interface (GUI) used to add up to 256 custom instructions to theNios II processor
The LTC®3207/LTC3207-1 is a 600mA LED/Camera driverwhich illuminates 12 Universal LEDs (ULEDs) and onecamera fl ash LED. The ULEDs are considered universalbecause they may be individually turned on or off, setin general purpose output (GPO) mode, set to blink at aselected on-time and period, or gradate on and off at aselected gradation rate. This device also has an externalenable (ENU) pin that may be used to blink, gradate, orturn on/off the LEDs without using the I2C bus. This may beuseful if the microprocessor is in sleep or standby mode. Ifused properly, these features may save valuable memoryspace, programming time, and reduce the I2C traffi c.
This book evolved over the past ten years from a set of lecture notes developed while teaching
the undergraduate Algorithms course at Berkeley and U.C. San Diego. Our way of teaching
this course evolved tremendously over these years in a number of directions, partly to address
our students' background (undeveloped formal skills outside of programming), and partly to
reect the maturing of the eld in general, as we have come to see it. The notes increasingly
crystallized into a narrative, and we progressively structured the course to emphasize the
?story line? implicit in the progression of the material. As a result, the topics were carefully
selected and clustered. No attempt was made to be encyclopedic, and this freed us to include
topics traditionally de-emphasized or omitted from most Algorithms books.
熟悉VB的朋友對使用ActiveX控件一定不會陌生,眾多控件極大地方便了編程,但唯一的缺陷是不能動態加載控件,必須在設計時通過引用,將控件放置在窗體上。VB6.0已能夠解決該問題,只是幫助中沒有明確說明,并且沒有描述到一些關鍵功能,由于以前的版本中可以動態創建進程外服務:如果對象是外部可創建的,可在 Set 語句中用 New 關鍵字、CreateObject 或 GetObject 從部件外面將對象引用賦予變量。如果對象是從屬對象,則需使用高層對象的方法,在 Set 語句中指定一個對象引用:
This example shows how to update at regulate period the WWDG counter using theEarly Wakeup interrupt (EWI).
The WWDG timeout is set to 262ms, refresh window set to 41h and the EWI isenabled. When the WWDG counter reaches 40h the EWI is generated and in the WWDGISR the counter is refreshed to prevent a WWDG reset and led connected to PC.07is toggled.The EXTI line9 is connected to PB.09 pin and configured to generate an interrupton falling edge.In the NVIC, EXTI line9 to 5 interrupt vector is enabled with priority equal to 0and the WWDG interrupt vector is enabled with priority equal to 1 (EXTI IT > WWDG IT).
The EXTI Line9 will be used to simulate a software failure: once the EXTI line9event occurs (by pressing Key push-button on EVAL board) the correspondent interruptis served, in the ISR the led connected to PC.07 is turned off and the EXTI line9pending bit is not cleared. So the CPU will execute indefinitely EXTI line9 ISR andthe WWDG ISR will never be entered(WWDG counter not updated). As result, when theWWDG counter falls to 3Fh the WWDG reset occurs.If the EXTI line9 event don抰 occurs the WWDG counter is indefinitely refreshed inthe WWDG ISR which prevent from WWDG reset.
If the WWDG reset is generated, after resuming from reset a led connected to PC.06is turned on.
In this example the system is clocked by the HSE(8MHz).
使用Nios II軟件構建工具
This chapter describes the Nios® II Software Build Tools (SBT), a set of utilities and
scripts that creates and builds embedded C/C++ application projects, user library
projects, and board support packages (BSPs). The Nios II SBT supports a repeatable,
scriptable, and archivable process for creating your software product.
You can invoke the Nios II SBT through either of the following user interfaces:
■ The Eclipse™ GUI
■ The Nios II Command Shell
The purpose of this chapter is to make you familiar with the internal functionality of
the Nios II SBT, independent of the user interface employed.
面向Eclips的Nios II軟件構建工具手冊
The Nios® II Software Build Tools (SBT) for Eclipse™ is a set of plugins based on the
Eclipse™ framework and the Eclipse C/C++ development toolkit (CDT) plugins. The
Nios II SBT for Eclipse provides a consistent development platform that works for all
Nios II embedded processor systems. You can accomplish all Nios II software
development tasks within Eclipse, including creating, editing, building, running,
debugging, and profiling programs.
Nios II定制指令用戶指南:With the Altera Nios II embedded processor, you as the system designer can accelerate time-critical software algorithms by adding custom instructions to the Nios II processor instruction set. Using custom
instructions, you can reduce a complex sequence of standard instructions to a single instruction implemented in hardware. You can use this feature for a variety of applications, for example, to optimize software inner
loops for digital signal processing (DSP), packet header processing, and computation-intensive applications. The Nios II configuration wizard,part of the Quartus® II software’s SOPC Builder, provides a graphical user interface (GUI) used to add up to 256 custom instructions to the Nios II processor.
The custom instruction logic connects directly to the Nios II arithmetic logic unit (ALU) as shown in Figure 1–1.