亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁(yè)| 資源下載| 資源專輯| 精品軟件
登錄| 注冊(cè)

iteration

  • Using Jacobi method and Gauss-Seidel iterative methods to solve the following system The require

    Using Jacobi method and Gauss-Seidel iterative methods to solve the following system The required precision is   =0.00001, and the maximum iteration number N=25. Compare the number of iterations and the convergence of these two methods

    標(biāo)簽: Gauss-Seidel iterative following methods

    上傳時(shí)間: 2016-02-06

    上傳用戶:zmy123

  • The MDP toolbox proposes functions related to the resolution of discrete-time Markov Decision Proces

    The MDP toolbox proposes functions related to the resolution of discrete-time Markov Decision Process : finite horizon, value iteration, policy iteration, linear programming algorithms with some variants. The functions (m-functions) were developped with MATLAB v6.0 (one of the functions requires the Mathworks Optimization Toolbox) by the decision team of the Biometry and Artificial Intelligence Unit of INRA Toulouse (France). The version 2.0 (February 2005) handles sparse matrices and contains an example

    標(biāo)簽: discrete-time resolution functions Decision

    上傳時(shí)間: 2014-01-01

    上傳用戶:xuanjie

  • 數(shù)值線性代數(shù)的Matlab應(yīng)用程序包 共13個(gè)程序函數(shù)

    數(shù)值線性代數(shù)的Matlab應(yīng)用程序包 共13個(gè)程序函數(shù),每個(gè)程序函數(shù)有相應(yīng)的例子函數(shù)一一對(duì)應(yīng),以*Example.m命名 程序名稱 用途 Method 方法 GrmSch.m QR因子分解 classical Gram-Schmidt orthogonalization 格拉母-斯密特 MGrmSch.m QR因子分解 modified Gram-Schmidt iteration 修正格拉母-斯密特 householder.m QR因子分解 Householder 豪斯霍爾德QR因子分解 ZXEC.m 最小二乘擬合 polynomial interpolant 最小二乘插值多項(xiàng)式 NCLU.m LU因子分解 Gaussian elimination 不選主元素的高斯消元 PALU.m LU因子分解 partial pivoting Gaussian elimination 部分選主元的高斯消元 cholesky.m 楚因子分解 Cholesky Factorization 楚列斯基因子分解 PwItrt.m 求最大特征值 Power iteration 冪迭代 Jacobi.m 求特征值 Jacobi iteration 按標(biāo)準(zhǔn)行方式次序的雅可比算法 Anld.m 求上Hessenberg Arnoldi iteration 阿諾爾迪迭代 zuisu.m 解線性方程組 Steepest descent 最速下降法 CG.m 解線性方程組 Gradients 共軛梯度 BCG.m 解線性方程組 Biconjugate Gradients 雙共軛梯度

    標(biāo)簽: Matlab 數(shù)值 應(yīng)用程序 函數(shù)

    上傳時(shí)間: 2016-05-17

    上傳用戶:小鵬

  • % EM algorithm for k multidimensional Gaussian mixture estimation % % Inputs: % X(n,d) - input da

    % EM algorithm for k multidimensional Gaussian mixture estimation % % Inputs: % X(n,d) - input data, n=number of observations, d=dimension of variable % k - maximum number of Gaussian components allowed % ltol - percentage of the log likelihood difference between 2 iterations ([] for none) % maxiter - maximum number of iteration allowed ([] for none) % pflag - 1 for plotting GM for 1D or 2D cases only, 0 otherwise ([] for none) % Init - structure of initial W, M, V: Init.W, Init.M, Init.V ([] for none) % % Ouputs: % W(1,k) - estimated weights of GM % M(d,k) - estimated mean vectors of GM % V(d,d,k) - estimated covariance matrices of GM % L - log likelihood of estimates %

    標(biāo)簽: multidimensional estimation algorithm Gaussian

    上傳時(shí)間: 2013-12-03

    上傳用戶:我們的船長(zhǎng)

  • function [U,center,result,w,obj_fcn]= fenlei(data) [data_n,in_n] = size(data) m= 2 % Exponent fo

    function [U,center,result,w,obj_fcn]= fenlei(data) [data_n,in_n] = size(data) m= 2 % Exponent for U max_iter = 100 % Max. iteration min_impro =1e-5 % Min. improvement c=3 [center, U, obj_fcn] = fcm(data, c) for i=1:max_iter if F(U)>0.98 break else w_new=eye(in_n,in_n) center1=sum(center)/c a=center1(1)./center1 deta=center-center1(ones(c,1),:) w=sqrt(sum(deta.^2)).*a for j=1:in_n w_new(j,j)=w(j) end data1=data*w_new [center, U, obj_fcn] = fcm(data1, c) center=center./w(ones(c,1),:) obj_fcn=obj_fcn/sum(w.^2) end end display(i) result=zeros(1,data_n) U_=max(U) for i=1:data_n for j=1:c if U(j,i)==U_(i) result(i)=j continue end end end

    標(biāo)簽: data function Exponent obj_fcn

    上傳時(shí)間: 2013-12-18

    上傳用戶:ynzfm

  • % Train a two layer neural network with the Levenberg-Marquardt % method. % % If desired, it is p

    % Train a two layer neural network with the Levenberg-Marquardt % method. % % If desired, it is possible to use regularization by % weight decay. Also pruned (ie. not fully connected) networks can % be trained. % % Given a set of corresponding input-output pairs and an initial % network, % [W1,W2,critvec,iteration,lambda]=marq(NetDef,W1,W2,PHI,Y,trparms) % trains the network with the Levenberg-Marquardt method. % % The activation functions can be either linear or tanh. The % network architecture is defined by the matrix NetDef which % has two rows. The first row specifies the hidden layer and the % second row specifies the output layer.

    標(biāo)簽: Levenberg-Marquardt desired network neural

    上傳時(shí)間: 2016-12-27

    上傳用戶:jcljkh

  • The False-Position method to solve a linear equation The Bisection method to solve linear equation

    The False-Position method to solve a linear equation The Bisection method to solve linear equation Jacobi iteration on a 3D plane

    標(biāo)簽: equation method linear solve

    上傳時(shí)間: 2014-09-11

    上傳用戶:kelimu

  • program to solve a finite difference discretization of Helmholtz equation : (

    program to solve a finite difference discretization of Helmholtz equation : (d2/dx2)u + (d2/dy2)u - alpha u = f using Jacobi iterative method. COMMENTS: OpenMP version 3: 1 PR outside the iteration loop, 4 Barriers Directives are used in this code to achieve paralleism. All do loops are parallized with default static scheduling.

    標(biāo)簽: discretization difference Helmholtz equation

    上傳時(shí)間: 2014-01-11

    上傳用戶:bruce5996

  • A fractal is generally "a rough or fragmented geometric shape that can be split into parts, each of

    A fractal is generally "a rough or fragmented geometric shape that can be split into parts, each of which is (at least approximately) a reduced-size copy of the whole,"[1] a property called self-similarity. The term was coined by Benoî t Mandelbrot in 1975 and was derived from the Latin fractus meaning "broken" or "fractured." A mathematical fractal is based on an equation that undergoes iteration, a form of feedback based on recursion.[2]

    標(biāo)簽: fragmented generally geometric fractal

    上傳時(shí)間: 2014-01-18

    上傳用戶:as275944189

亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美综合77777色婷婷| 欧美国产精品劲爆| 一区二区三区欧美在线| 国产在线视频欧美| 国产精品网站在线观看| 欧美激情精品久久久六区热门 | 亚洲国产精品免费| 国产乱码精品一区二区三区av| 欧美二区在线观看| 久久米奇亚洲| 久久久综合网站| 久久久99爱| 久久激情婷婷| 久久成人人人人精品欧| 午夜精品电影| 午夜精品福利电影| 欧美一区二区三区的| 欧美亚洲一级| 久久久999国产| 久久久噜噜噜久久| 久久久人成影片一区二区三区观看| 午夜亚洲福利在线老司机| 亚洲欧美日韩一区二区| 欧美伊人久久久久久午夜久久久久| 在线精品视频在线观看高清| 激情综合在线| 亚洲国产欧美一区二区三区同亚洲| 伊人久久大香线| 一区精品在线播放| 亚洲日本电影| 亚洲精品婷婷| 中国成人亚色综合网站| 亚洲自拍三区| 久久久久久久久一区二区| 久久婷婷丁香| 欧美国产先锋| 国产精品免费一区豆花| 国产精品日本精品| 国产一区二区观看| 亚洲黄色av| 亚洲视频精品在线| 欧美在现视频| 欧美国产在线视频| 欧美日韩一区二区三区在线观看免| 欧美区二区三区| 欧美视频一区二| 国产欧美日韩精品在线| 亚洲电影视频在线| 中文有码久久| 国产精品入口| 国内成+人亚洲+欧美+综合在线| 国产精品网站在线| 91久久午夜| 欧美专区一区二区三区| 鲁大师影院一区二区三区| 国产精品福利片| 黄色亚洲精品| 一区二区三区欧美在线| 午夜精品福利视频| 久久尤物视频| 国产女人18毛片水18精品| 亚洲黑丝在线| 久久精品成人一区二区三区| 欧美激情在线| 激情一区二区| 亚洲欧美日韩精品久久奇米色影视| 久久国产高清| 国产精品国产三级国产aⅴ9色| 一区二区三区在线观看欧美 | 亚洲欧美电影院| 麻豆精品视频在线| 国产精品视频一区二区高潮| 亚洲国产精品久久91精品| 亚洲欧洲99久久| 亚洲一区国产一区| 在线综合视频| 亚洲一区二区视频| 亚洲美洲欧洲综合国产一区| 国产精品国产三级国产普通话蜜臀 | 日韩视频在线永久播放| 亚洲一区在线播放| 久久久噜噜噜久久人人看| 欧美激情一区二区久久久| 亚洲网在线观看| 99视频一区二区| 午夜精品区一区二区三| 欧美乱人伦中文字幕在线| 国产精品一卡二| 亚洲伦理中文字幕| 久久大逼视频| 国产午夜一区二区三区| 亚洲天堂av在线免费观看| 久久一二三区| 国产欧美另类| 亚洲一区二区三区高清 | 国产一区二区精品久久99| 一本一本久久a久久精品综合妖精| 毛片精品免费在线观看| 黄色亚洲在线| 麻豆精品视频| 91久久久久久久久| 欧美经典一区二区| 日韩亚洲欧美一区二区三区| 欧美久久婷婷综合色| 亚洲国产一区二区三区高清| 久久久精品网| 精品动漫一区| 欧美激情第五页| 亚洲国产综合在线看不卡| 欧美国产日本在线| 一区二区国产精品| 美女图片一区二区| 亚洲国产精品成人va在线观看| 久久久国产一区二区| 激情久久久久久| 欧美激情第六页| 亚洲一区美女视频在线观看免费| 国产老女人精品毛片久久| 久久激情一区| 樱花yy私人影院亚洲| 欧美成人在线免费观看| 日韩视频在线观看| 欧美日韩中文字幕在线视频| 亚洲欧美清纯在线制服| 国内精品久久久久久影视8 | 国内精品美女在线观看| 欧美一区亚洲一区| 亚洲无限乱码一二三四麻| 国产欧美三级| 久久婷婷国产综合国色天香| 最新中文字幕亚洲| 国产精品毛片在线| 久久一二三四| 日韩一级在线观看| 国产精品美女www爽爽爽视频| 这里只有精品丝袜| 国产美女精品一区二区三区| 久久久久九九视频| 日韩视频免费| 国产欧美一区二区三区另类精品 | 美女任你摸久久| 一本色道婷婷久久欧美| 国产日韩在线播放| 欧美激情视频一区二区三区免费| 亚洲一二三级电影| 亚洲高清av| 国产精品乱码妇女bbbb| 欧美电影免费观看网站 | 欧美亚洲免费电影| 亚洲欧洲一二三| 国产午夜精品久久久久久久| 欧美日韩国产欧美日美国产精品| 午夜精品久久99蜜桃的功能介绍| 亚洲日本aⅴ片在线观看香蕉| 国产亚洲欧美一区二区| 欧美精品在线一区| 久久综合国产精品台湾中文娱乐网| 亚洲视频国产视频| 亚洲人体大胆视频| 国产午夜精品视频| 国产精品视频福利| 欧美日韩国产一区| 欧美亚洲日本国产| 亚洲视屏一区| 亚洲精品影视| 亚洲国产经典视频| 极品尤物av久久免费看| 国产区精品在线观看| 欧美视频在线观看免费| 欧美成人四级电影| 久久网站热最新地址| 欧美在线国产精品| 欧美一级午夜免费电影| 亚洲女人小视频在线观看| 亚洲图片在区色| 亚洲自拍啪啪| 校园激情久久| 欧美制服丝袜第一页| 午夜精品久久久久久久久久久| 亚洲一区在线直播| 亚洲欧美国产三级| 午夜亚洲福利在线老司机| 欧美在线三级| 欧美一区二区三区在线观看| 亚洲性色视频| 性色一区二区三区| 久久精品成人一区二区三区| 激情成人综合| 激情久久久久久| 伊人色综合久久天天| 激情久久久久久| 亚洲激情在线视频| 一本色道久久综合亚洲精品婷婷 | 午夜精品视频一区| 一区二区三区|亚洲午夜| 在线亚洲免费| 亚洲天天影视| 久久久久国产成人精品亚洲午夜| 欧美精品色一区二区三区| 久久久xxx|