The Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG are finalising a new standard for
the coding (compression) of natural video images. The new standard [1] will be known as H.264 and
also MPEG-4 Part 10, “Advanced Video Coding”. The standard specifies two types of entropy coding:
Context-based Adaptive Binary Arithmetic Coding (CABAC) and Variable-Length Coding (VLC).
This document provides a short introduction to CABAC. Familiarity with the concept of Arithmetic
Coding is assumed.
The Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG are finalising a new standard for
the coding (compression) of natural video images. The new standard [1] will be known as H.264 and
also MPEG-4 Part 10, “Advanced Video Coding”. This document introduces the concepts of
Switching P and I slices, part of the Extended Profile of H.264.
The Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG are finalising a new standard for
the coding (compression) of natural video images. The new standard [1] will be known as H.264 and
also MPEG-4 Part 10, “Advanced Video Coding”. The standard specifies two types of entropy coding:
Context-based Adaptive Binary Arithmetic Coding (CABAC) and Variable-Length Coding (VLC).
The Variable-Length Coding scheme, part of the Baseline Profile of H.264, is described in this
document.
Testbenches have become an integral part of the design process, enabling you to verify that your HDL model is sufficiently tested before implementing your design and helping you automate the design verification process. It is essential, therefore, that you have confidence your testbench is thoroughly exercising your design. Collecting code coverage statistics during simulation helps to ensure the quality and thoroughness of your tests.
In recent years large scientific interest has been
devoted to joint data decoding and parameter estimation
techniques. In this paper, iterative turbo decoding joint
to channel frequency and phase estimation is proposed.
The phase and frequency estimator is embedded into the
structure of the turbo decoder itself, taking into consideration
both turbo interleaving and puncturing. Results
show that the proposed technique outperforms conventional
approaches both in terms of detection capabilities and
implementation complexity.
This paper investigates the design of joint frequency
offset and carrier phase estimation of a multi-frequency time division
multiple access (MF-TDMA) demodulator that is applied to
a digital video broadcasting—return channel system via satellite
(DVB-RCS). The proposed joint estimation algorithm is based on
the interpolation technique for two correlation values in the frequency
and phase domains. This simple interpolation technique
can significantly improve frequency and phase resolution capabilities
of the proposed technique without increasing the number of
the correlation values. In addition, the overall block diagram of a
digital communications receiver for DVB-RCS is presented, which
was designed using the proposed estimation algorithms.
Index Terms—Carrier phase estimation, DVB-RCS, frequency
offset estimation, interpolation, joint estimation, MF-TDMA.