In just 24 lessons of one hour or less, you will be able to build dynamic Web sites using JavaServer Pages. Using a straightforward, step-by-step approach, each lesson builds on the previous ones, enabling you to learn the essentials of JavaServer Pages 2.0 from the ground up. The book includes Apache Tomcat, Sun s reference implementation of JSP, so you can start developing applications immediately.
Exploring C++ uses a series of self–directed lessons to divide C++ into bite–sized chunks that you can digest as rapidly as you can swallow them. The book assumes only a basic understanding of fundamental programming concepts (variables, functions, expressions, statements) and requires no prior knowledge of C or any other particular language. It reduces the usually considerable complexity of C++.
The included lessons allow you to learn by doing, as a participant of an interactive education session. You’ll master each step in a one sitting before you proceed to the next. Author Ray Lischner has designed questions to promote learning new material. And by responding to questions throughout the text, youll be engaged every step of the way.
This document was developed under the Standard Hardware and Reliability Program (SHARP) TechnologyIndependent Representation of Electronic Products (TIREP) project. It is intended for use by VHSIC HardwareDescription Language (VHDL) design engineers and is offered as guidance for the development of VHDL modelswhich are compliant with the VHDL Data Item Description (DID DI-EGDS-80811) and which can be providedto manufacturing engineering personnel for the development of production data and the subsequent productionof hardware. Most VHDL modeling performed to date has been concentrated at either the component level orat the conceptual system level. The assembly and sub-assembly levels have been largely disregarded. Under theSHARP TIREP project, an attempt has been made to help close this gap. The TIREP models are based upon lowcomplexity Standard Electronic Modules (SEM) of the format A configuration. Although these modules are quitesimple, it is felt that the lessons learned offer guidance which can readily be applied to a wide range of assemblytypes and complexities.
Digital convergence, in recent history, has been prevalentin the consumer equipment domain and the designengineers in this area have been struggling with a plethoraof emerging standards and protocols. What lessons can welearn from their struggle? The same dilemmas now existin in-vehicle telematics and infotainment systems but withthe added issues of extremes of temperature, safety,security, and time in market.
One of the fi rst lessons in a basic electronics coursecovers the symbols for resistors, capacitors, inductors,voltage sources and current sources. Althougheach symbol represents a functional component of areal-world circuit, only some of the symbols have directphysical counterparts. For instance, the three discretepassive devices—resistors, capacitors, inductors—canbe picked off a shelf and placed on a real board muchas their symbolic analogs appear in a basic schematic.Likewise, while voltage sources have no direct 2-terminalanalog, a voltage source can be easily built with an offthe-shelf linear regulator.