Agilent AN 154 S-Parameter Design Application Note S參數的設計與應用
The need for new high-frequency, solid-state circuitdesign techniques has been recognized both by microwaveengineers and circuit designers. These engineersare being asked to design solid state circuitsthat will operate at higher and higher frequencies.The development of microwave transistors andAgilent Technologies’ network analysis instrumentationsystems that permit complete network characterizationin the microwave frequency rangehave greatly Assisted these engineers in their work.The Agilent Microwave Division’s lab staff hasdeveloped a high frequency circuit design seminarto assist their counterparts in R&D labs throughoutthe world. This seminar has been presentedin a number of locations in the United States andEurope.From the experience gained in presenting this originalseminar, we have developed a four-part videotape, S-Parameter Design Seminar. While the technologyof high frequency circuit design is everchanging, the concepts upon which this technologyhas been built are relatively invariant.The content of the S-Parameter Design Seminar isas follows:
In 1960, R.E. Kalman published his famous paper describing a recursive solution
to the discrete-data linear filtering problem. Since that time, due in large part to advances
in digital computing, the Kalman filter has been the subject of extensive research
and application, particularly in the area of autonomous or Assisted
navigation.
In 1960, R.E. Kalman published his famous paper describing a recursive solution to the discretedata
linear filtering problem [Kalman60]. Since that time, due in large part to advances in digital
computing, the
Kalman filter
has been the subject of extensive research and application,
particularly in the area of autonomous or Assisted navigation. A very “friendly” introduction to the
general idea of the Kalman filter can be found in Chapter 1 of [Maybeck79], while a more complete
introductory discussion can be found in [Sorenson70], which also contains some interesting
historical narrative.
包含了H.264編碼標準的兩篇文章,是講多描述編碼的。An Effective Epipolar Geometry Assisted Motion Estimation Technique for Multi-View Image and Video Coding和An Epipolar Geometry-Based Fast Disparity Estimation Algorithm for Multiview Image and Video Coding
Within this book the fundamental concepts associated with the topic of power electronic control are covered alongside the latest equipment and devices, new application areas and associated computer-Assisted methods.
*A practical guide to the control of reactive power systems
*Ideal for postgraduate and professional courses
*Covers the latest equipment and computer-aided analysis
A major societal challenge for the decades to come will be the delivery of effective
medical services while at the same time curbing the growing cost of healthcare.
It is expected that new concepts-particularly electronically Assisted healthcare will
provide an answer. This will include new devices, new medical services as well
as networking. On the device side, impressive innovation has been made possible
by micro- and nanoelectronics or CMOS Integrated Circuits. Even higher accuracy
and smaller form factor combined with reduced cost and increased convenience
of use are enabled by incorporation of CMOS IC design in the realization of biomedical
systems. The compact hearing aid devices and current pacemakers are
good examples of how CMOS ICs bring about these new functionalities and services
in the medical field. Apart from these existing applications, many researchers
are trying to develop new bio-medical solutions such as Artificial Retina, Deep
Brain Stimulation, and Wearable Healthcare Systems. These are possible by combining
the recent advances of bio-medical technology with low power CMOS IC
technology.
The continued reduction of integrated circuit feature sizes and
commensurate improvements in device performance are fueling the progress
to higher functionality and new application areas. For example, over the last
15 years, the performance of microprocessors has increased 1000 times.
Analog circuit performance has also improved, albeit at a slower pace. For
example, over the same period the speed/resolution figure-of-merit of
analog-to-digital converters improved by only a factor 10.