gmsk modulation of numerical data generated by a random source, the output of the modulator give two signals, the first is gmsk signal and the other is gaussien frequency pulse shape
Abstract: A digital RF modulator, an integrated solution that satisfies stringent DOCSIS RF-performancerequirements, takes advantage of modern technologies like high-performance wideband digital-to-analogconversion and CMOS technology scaling. This application note describes the concept and advantages ofa digital quadrature amplitude modulation (QAM) modulator that uses the direct-RF architecture to enablea cable access platform (CCAP) system.
Linear Technology’s High Frequency Product lineupincludes a variety of RF I/Q modulators. The purpose ofthis application note is to illustrate the circuits requiredto interface these modulators with several popular D/Aconverters. Such circuits typically are required to maximizethe voltage transfer from the DAC to the baseband inputsof the modulator, as well as provide some reconstructionfi ltering.
Designing read/write device (RWD) units for industrial RF-Identification
applications is strongly facilitated by the NXP Semiconductors HITAG
Reader Chip HTRC110. All needed function blocks, like the antenna
driver, modulator demodulator and antenna diagnosis unit, are integrated
in the HTRC110. Therefore only a minimum number of additional passive
components are required for a complete RWD.
This Application Note describes how to design an industrial
RF-Identification system with the HTRC110. The major focus is
dimensioning of the antenna, all other external components including
clock and power supply, as well as the demodulation principle and its
implementatio
This packet is a IS-95 baseband simulation for 1 data channel of 9.6 KBps rate. The simulation is written for static channel and AWGN noise.
The packet include:
1) Packet Builder (Viterbi Encoding, Interleaver, PN generation)
2) modulator (RRC filter)
3) Demodulator (Matched Filter, RAKE receiver)
4) Receiver (HD or SD) (Deinterleaver, Viterbi Decoder).
You should run "Simulation.m" function that include all modules.
his packet is a IS-95 baseband simulation for 1 data channel of 9.6 KBps rate.
The simulation is written for static channel and AWGN noise. The packet include:
1) Packet Builder (Viterbi Encoding, Interleaver, PN generation)
2) modulator (RRC filter)
3) Demodulator (Matched Filter, RAKE receiver)
4) Receiver (HD or SD) (Deinterleaver, Viterbi Decoder).
You should run "Simulation.m" function that include all modules.