Goodrich版算法設(shè)計與基礎(chǔ)
標(biāo)簽: 算法
上傳時間: 2016-02-09
上傳用戶:半年不見
調(diào)制解調(diào)課程設(shè)計 16QAM調(diào)制解調(diào)代碼。包括星座圖,頻譜分析,誤碼率分析。-16QAM modulation and demodulation curriculum design code modulation and demodulation. Including constellation, spectrum analysis, bit error rate analysis.
上傳時間: 2016-05-02
上傳用戶:ylqylq
一本從數(shù)據(jù)結(jié)構(gòu)的基礎(chǔ)到深入剖釋的書籍,值得收藏。另一方面,為了獲取積分才把珍藏的英文版放上來。
標(biāo)簽: Structures Algorithm Analysis Data and
上傳時間: 2016-07-26
上傳用戶:cee16
LDO 的環(huán)路分析,對涉及、分析LDO的工作原理有幫助。
上傳時間: 2017-09-09
上傳用戶:banjieshubi
The 4.0 kbit/s speech codec described in this paper is based on a Frequency Domain Interpolative (FDI) coding technique, which belongs to the class of prototype waveform Interpolation (PWI) coding techniques. The codec also has an integrated voice activity detector (VAD) and a noise reduction capability. The input signal is subjected to LPC analysis and the prediction residual is separated into a slowly evolving waveform (SEW) and a rapidly evolving waveform (REW) components. The SEW magnitude component is quantized using a hierarchical predictive vector quantization approach. The REW magnitude is quantized using a gain and a sub-band based shape. SEW and REW phases are derived at the decoder using a phase model, based on a transmitted measure of voice periodicity. The spectral (LSP) parameters are quantized using a combination of scalar and vector quantizers. The 4.0 kbits/s coder has an algorithmic delay of 60 ms and an estimated floating point complexity of 21.5 MIPS. The performance of this coder has been evaluated using in-house MOS tests under various conditions such as background noise. channel errors, self-tandem. and DTX mode of operation, and has been shown to be statistically equivalent to ITU-T (3.729 8 kbps codec across all conditions tested.
標(biāo)簽: frequency-domain interpolation performance Design kbit_s speech coder based and of
上傳時間: 2018-04-08
上傳用戶:kilohorse
Test Analysis Software
標(biāo)簽: NDepend
上傳時間: 2018-07-28
上傳用戶:teomondo
統(tǒng)計領(lǐng)域經(jīng)典書籍,貝葉斯數(shù)據(jù)分析(英文原版),第三版
標(biāo)簽: Bayesian Analysis Data
上傳時間: 2018-10-23
上傳用戶:fuchuchaoyue
使用matlab實現(xiàn)gibbs抽樣,MCMC: The Gibbs Sampler 多元高斯分布的邊緣概率和條件概率 Marginal and conditional distributions of multivariate normal distribution
上傳時間: 2019-12-10
上傳用戶:real_
深度學(xué)習(xí),神經(jīng)網(wǎng)絡(luò),卷積神經(jīng)網(wǎng)絡(luò) Analysis of Deep Learning Models using CNN Techniques
標(biāo)簽: 卷積 神經(jīng)網(wǎng)絡(luò) 模型分析
上傳時間: 2020-01-02
上傳用戶:wzy2020
壓縮包中有5篇論文,分別為《Data-driven analysis of variables and dependencies in continuous optimization problems and EDAs》這是一篇博士論文,較為詳細(xì)的介紹了各種EDA算法;《Anisotropic adaptive variance scaling for Gaussian estimation of distribution algorithm》《Enhancing Gaussian Estimation of Distribution Algorithm by Exploiting Evolution Direction with Archive》《Niching an Archive-based Gaussian Estimation of Distribution Algorithm via Adaptive Clustering》《Supplementary material for Enhancing Gaussian Estimation of Distribution Algorithm by Exploiting Evolution Direction with Archive》《基于一般二階混合矩的高斯分布估計算法》介紹了一些基于EDA的創(chuàng)新算法。
上傳時間: 2020-05-25
上傳用戶:duwenhao
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1