Multiple-voltage electronics systems often requirecomplex supply voltage tracking or sequencing, whichif not met, can result in system faults or even permanentfailures in the fi eld. The design diffi culties in meetingthese requirements are often compounded in distributedpowerarchitectures where point-of-load (POL) DC/DCconverters or linear regulators are scattered across PCboard space, sometimes on different board planes. Theproblem is that power supply circuitry is often the lastcircuitry to be designed into the board, and it must beshoehorned into whatever little board real estate is left.Often, a simple, drop-in, fl exible solution is needed tomeet these requirements.
As the performance of many handheld devices approachesthat of laptop computers, design complexity also increases.Chief among them is thermal management—how doyou meet increasing performance demands while keepinga compact and small product cool in the user’s hand?For instance, as battery capacities inevitably increase,charge currents will also increase to maintain or improvetheir charge times. Traditional linear regulator-based batterychargers will not be able to meet the charge currentand effi ciency demands necessary to allow a product torun cool. What is needed is a switching-based chargerthat takes just about the same amount of space as a linearsolution—but without the heat.
Handheld designers often grapple with ways to de-bounceand control the on/off pushbutton of portable devices.Traditional de-bounce designs use discrete logic, fl ipflops, resistors and capacitors. Other designs includean onboard microprocessor and discrete comparatorswhich continuously consume battery power. For highvoltage multicell battery applications, a high voltageLDO is needed to drive the low voltage devices. All thisextra circuitry not only increases required board spaceand design complexity, but also drains the battery whenthe handheld device is turned off. Linear Technology addressesthis pushbutton interface challenge with a pairof tiny pushbutton controllers.
Many system designers need an easy way to producea negative 3.3V power supply. In systems that alreadyhave a transformer, one option is to swap out the existingtransformer with one that has an additional secondarywinding. The problem with this solution is that manysystems now use transformers that are standard, offthe-shelf components, and most designers want toavoid replacing a standard, qualifi ed transformer with acustom version. An easier alternative is to produce thelow negative voltage rail by stepping down an existingnegative rail. For example, if the system already employsan off-the-shelf transformer with two secondary windingsto produce ±12V, and a –3.3V rail is needed, a negativebuck converter can produce the –3.3V output from the–12V rail.
Notebook and palmtop systems need a multiplicity ofregulated voltages developed from a single battery. Smallsize, light weight, and high efficiency are mandatory forcompetitive solutions in this area. Small increases inefficiency extend battery life, making the final productmuch more usable with no increase in weight. Additionally,high efficiency minimizes the heat sinks needed onthe power regulating components, further reducing systemweight and size.
For a variety of reasons, it is desirable to charge batteriesas rapidly as possible. At the same time, overchargingmust be limited to prolong battery life. Such limitation ofovercharging depends on factors such as the choice ofcharge termination technique and the use of multi-rate/multi-stage charging schemes. The majority of batterycharger ICs available today lock the user into one fixedcharging regimen, with at best a limited number ofcustomization options to suit a variety of application needsor battery types. The LTC®1325 addresses these shortcomingsby providing the user with all the functionalblocks needed to implement a simple but highly flexiblebattery charger (see Figure 1) which not only addressesthe issue of charging batteries but also those of batteryconditioning and capacity monitoring.
When a system designer specifies a nonisolated dc/dc powermodule, considering the needed input voltage range isequally as important as considering the required performanceattributes and features. Generally, nonisolated moduleshave either a narrow or a wide input voltage range. Narrowinputmodules typically have a nominal input voltage of3.3, 5, or 12 V. For systems that operate from a tightlyregulated input bus—such as those that do not use batterybackup—a narrow-input module is often adequate sincethe input remains fairly stable.Offering greater flexibility, wide-input modules operatewithin a range of 7 to 36 V, which includes the popular12- or 24-V industrial bus. This enables a single module tobe used for generating multiple voltages. These modulesare ideal for industrial controls, HVAC systems, vehicles,medical instrumentation, and other applications that usea loosely regulated distribution bus. In addition, systemspowered by a rectifier/battery charger with lead-acidbattery backup almost always require wide-input modules.System designers who choose power supplies may wantto take a close look at the latest generation of wide-inputdc/dc modules.
Designing read/write device (RWD) units for industrial RF-Identification
applications is strongly facilitated by the NXP Semiconductors HITAG
Reader Chip HTRC110. All needed function blocks, like the antenna
driver, modulator demodulator and antenna diagnosis unit, are integrated
in the HTRC110. Therefore only a minimum number of additional passive
components are required for a complete RWD.
This Application Note describes how to design an industrial
RF-Identification system with the HTRC110. The major focus is
dimensioning of the antenna, all other external components including
clock and power supply, as well as the demodulation principle and its
implementatio
生活中許多目標的高度和水平距離需要進行測量。目前主要的測量方法,仍以傳統(tǒng)的皮尺丈量為主,測量效率不高,有時還很不方便,沒有技術(shù)成熟的數(shù)字式測高測距產(chǎn)品。以基本的數(shù)學方法為理論依據(jù),利用遙控小車做為載體,采用角度傳感器測量角度、霍爾傳感器測量水平距離等,通過單片機LM3S615進行數(shù)據(jù)計算,實現(xiàn)了對待測目標物體的高度、水平距離等數(shù)據(jù)的快速、精確和數(shù)字式的測量,高度測量精度可達99.06%,水平測量精度則可達98.06%。
Abstract: In our lives, the height and horizontal distance of some goals are needed to be measured. Because the currently used methods are still traditional tape-based measuring methods, and the measuring efficiency is low and inconvenient so some kinds of digital and portable measuring methods or instruments are needed. Based on the basic math theory, this paper designed and manufactured a portable, digital and remote controlled measuring mobile small vehicle, which assembled with angle measuring sensor for angle measurement and Hall sensor for horizontal distance measuring. MCU LM3S615 calculated the height and horizontal distance data gotten from these sensors. The measuring process is simple, the measuring results are more accurate and the measuring efficiency is higher than traditional measure instruments. The accuracy of height and distance measurement can reach 99.06% and 98.06%.
介紹了采用ATmega48單片機實現(xiàn)三相無刷直流電機控制器的方法。利用Atmega48獲得帶死區(qū)的脈寬調(diào)制(PWM)、霍爾傳感器的換相處理、正弦驅(qū)動信號的產(chǎn)生和電機轉(zhuǎn)速的控制等功能。采用該方法的優(yōu)點是所需的外圍器件少,成本低。
Abstract:
The method of 3-phase brushless DC motor control based on ATmega48 is presented in this paper.The system uses ATmega48 to generate PWM signals with dead-time, hall sensors signals commutation,sine driving signal and rotational speed of motor.Using this method,the needed external devices are few, the cost is low.