During the past three decades, the world has seen signifi cant changes in the telecom-
munications industry. There has been rapid growth in wireless communications, as
seen by large expansion in mobile systems. Wireless communications have moved
from fi rst-generation (1G) systems primarily focused on voice communications to
third-generation (3G) systems dealing with Internet connectivity and multi-media
applications. The fourth-generation (4G) systems will be designed to connect wire-
less personal area networks (WPANs), wireless local area networks (WLANs) and
wireless wide-area networks (WWANs).
Wirelesscommunications,especiallyinitsmobileform,hasbroughtusthefreedomofmobility
andhaschangedthelifestylesofmodernpeople.Waitingatafixedlocationtoreceiveormakea
phone call, or sitting in front of a personal computer to send an e-mail or download a video
program, has become an old story. Nowadays it is commonplace for people to talk over a cell
phonewhilewalkingonthestreet,ortodownloadandwatchamoviewhiletravelingonatrain.
Thisisthebenefitmadeavailabletousbythesuccessfulevolutionofwirelesscommunications
over three generations, with the fourth generation being under way.
Wireless Mesh Networks (WMN) are believed to be a highly promising
technology and will play an increasingly important role in future
generation wireless mobile networks. WMN is characterized by
dynamic self-organization, self-configuration and self-healing to
enable quick deployment, easy maintenance, low cost, high scalability
and reliable services, as well as enhancing network capacity, connect-
ivity and resilience.
This book paves the path toward fourth generation (4G) mobile communica-
tion by introducing mobility in heterogeneous IP networks with both third
generation (3G) and wireless local area networks (WLANs), which is seen as
one of the central issues in the becoming 4G of telecommunications networks
and systems. This book presents a thorough overview of 3G networks and
standards and discusses interworking and handover mechanisms between
WLANs and the Universal Mobile Telecommunication System (UMTS).
As we enter the next millennium, there are clear technological patterns. First, the
electronic industry continues to scale microelectronic structures to achieve faster
devices, new devices, or more per unit area. Secondly, electrostatic charge, electrostatic
discharge (ESD), electrical overstress (EOS) and electromagnetic emissions (EMI)
continue to be a threat to these scaled structures. This dichotomy presents a dilemma
for the scaling of semiconductor technologies and a future threat to new technologies.
Technological advancements, material changes, design techniques, and simulation can
fend off this growing concern – but to maintain this ever-threatening challenge, one must
continue to establish research and education in this issue.
Electricity has been chosen as the most convenient and useful form of energy, due
to its ease of transportation over large distances and easy conversion to other
energy forms. The biggest inconvenience with electricity is that it cannot be stored
and must be utilized at the moment of generation. The storage of a large amount of
electrical energy is usually connected with its conversion to other types of energy,
which significantly reduces the efficiency of such processes. The aim of the power
system, often treated as the biggest and the most complex machine ever built, is to
deliver uninterruptible electric energy of demanded quality parameters to
consumers.
This book is written for engineers involved in the operation, control, and
planning of electric power systems. In addition, the book provides information and
tools for researchers working in the fields of power system security and stability. The
book consists of two volumes. The first volume provides traditional techniques for the
stability analysis of large scale power systems. In addition, an overview of the main
drivers and requirements for modernization of the traditional methods for online
applications are discussed. The second volume provides techniques for online security
assessment and corrective action studies. In addition, the impact of variable generation
on the security of power systems is considered in the second volume. The first volume
may be considered as a background builder while the second volume is intended for
the coverage of edge techniques and methods for online dynamic security studies.
A revolution in power industries, including generation, transmission and distribution, driven by
environmental and economic considerations, is taking place all over the world. The smart grid allows for
integration of diverse generation and storage options, reduced losses, improved efficiencies, increased
grid flexibility, reduced power outages, allowing for competitive electricity pricing and integration of
electric vehicles and overall becoming more responsive to market, consumer and societal needs. It is
bringing profound changes to both power systems and many related industries.
The use of renewable energy systems, such as wind power, hydropower, tidal
power, solar power, geothermal power and biomass burn is growing. Research in
electric power generation from renewable sources is continuously expanding and
stands for an area of high technological and financial importance. The implemen-
tation of new technologies for the functioning and management of renewable
energy systems will help to further develop the renewable energy sector.
Commercial energy storage has moved from the margins to the mainstream as it
fosters flexibility in our smarter, increasingly integrated energy systems. The
energy density, availability, and relatively clean fossil profile of natural gas ensure
its critical role as a fuel for heating and electricity generation. As a transportation
fuel, natural gas continues to increase its market penetration; much of this has been
enabled by emerging developments in storage technology.