Matsig is an object-oriented signal class library for MATLAB 6.5 and later. It implements a signal class, simplifying operations and manipulations common in audio signal processing and speech processing
CAN1.c and CAN2.c are a simple example of configuring a CAN network to
transmit and receive data on a CAN network, and how to move information to
and from CAN RAM message objects. Each C8051F040-TB CAN node is configured
to send a message when it s P3.7 button is depressed/released, with a 0x11
to indicate the button is pushed, and 0x00 when released. Each node also has
a message object configured to receive messages. The C8051 tests the
received data and will turn on/off the target board s LED. When one target
is loaded with CAN2.c and the other is loaded with CAN1.c, one target
board s push-button will control the other target board s LED, establishing
a simple control link via the CAN bus and can be observed directly on the
target boards.
A class--the basic building block of an object-oriented language such as Java--is a template that describes the data and behavior associated with instances of that class. When you instantiate a class you create an object that looks and feels like other instances of the same class. The data associated with a class or object is stored in variables the behavior associated with a class or object is implemented with methods. Methods are similar to the functions or procedures in procedural languages such as C.
list is a data dtructure. this is a data structure type implemantation and it is implemented in C prgramming language. General header contains pointer to object so list.c in c is implemented in generic way.
If you are a C++ programmer who desires a fuller understanding of what is going on "under the hood," then Inside the C++ Object Model is for you!
Inside the C++ Object Model focuses on the underlying mechanisms that support object-oriented programming within C++: constructor semantics, temporary generation, support for encapsulation, inheritance, and "the virtuals"-virtual functions and virtual inheritance. This book shows how your understanding the underlying implementation models can help you code more efficiently and with greater confidence. Lippman dispells the misinformation and myths about the overhead and complexity associated with C++, while pointing out areas in which costs and trade offs, sometimes hidden, do exist. He then explains how the various implementation models arose, points out areas in which they are likely to evolve, and why they are what they are. He covers the semantic implications of the C++ object model and how that model affects your programs.