數(shù)值計(jì)算牛頓迭代法的matlab源程序
說明如下:
%fun----input,the part as the form of f(x) in the equation f(x)=0
% ini----input,sets the starting point to ini
% err----input,sets admissible error
% sol----output,returns the root of equation
P3.20. Consider an analog signal xa (t) = sin (2πt), 0 ≤t≤ 1. It is sampled at Ts = 0.01, 0.05,
and 0.1 sec intervals to obtain x(n).
b) Reconstruct the analog signal ya (t) from the samples x(n) using the sinc interpolation
(use ∆ t = 0.001) and determine the frequency in ya (t) from your plot. (Ignore the end
effects.)
C) Reconstruct the analog signal ya (t) from the samples x (n) using the cubic spline
interpolation and determine the frequency in ya (t) from your plot. (Ignore the end effects.)
We introduce a sub-cell WENO reconstruction method to evaluate spatial derivatives in the high-order ADER scheme. The basic idea in our reconstruction is to use only r stencils to reconstruct the point-wise values of solutions and spatial derivatives for the 2r-1 th order
ADER scheme in one dimension, while in two dimensions, the dimension-by-dimension sub-cell reconstruction approach for spatial derivatives is employed. Compared with the original ADER scheme of Toro and Titarev (2002) [2] that uses the direct derivatives of reconstructed polynomials for solutions to evaluate spatial derivatives, our method not only reduces greatly the computational costs of the ADER scheme on a given mesh,
but also avoids possible numerical oscillations near discontinuities, as demonstrated by a number of one- and two-dimensional numerical tests. All these tests show that the 5th-order ADER scheme based on our sub-cell reconstruction method achieves the desired accuracy, and is essentially non-oscillatory and computationally cheaper for problems with discontinuities.
In this paper we present a classifier called bi-density twin support vector machines (BDTWSVMs) for data classification. In the training stage, BDTWSVMs first compute the relative density degrees for all training points using the intra-class graph whose weights are determined by a local scaling heuristic strategy, then optimize a pair of nonparallel hyperplanes through two smaller sized support vector machine (SVM)-typed problems. In the prediction stage, BDTWSVMs assign to the class label depending
on the kernel density degree-based distances from each test point to the two hyperplanes. BDTWSVMs not only inherit good properties from twin support vector machines (TWSVMs) but also give good description for data points. The experimental results on toy as well as publicly available datasets
indicate that BDTWSVMs compare favorably with classical SVMs and TWSVMs in terms of generalization
Digital cellular telecommunications system (Phase 2+);
Technical realization of the Short Message Service (SMS)
Point-to-Point (PP)
(3GPP TS 03.40 version 7.5.0 Release 1998)
The objective of this book is to allow the reader to predict the received
signal power produced by a particular radio transmitter. The first two
chapters examine propagation in free space for point-to-point and
point-to-area transmission, respectively. This is combined with a dis-
cussion regarding the characteristics of antennas for various purposes. In
chapter 3, the effect of obstacles, whether buildings or mountains, is
discussed and analytical methods, whereby the strength of a signal is the
shadow of an obstacle can be predicted, are presented.
Wireless means different things to different people. For this book, it refers
to the radio systems that provide point-to-point, point-to-multipoint, and
Earth-space communications over transmission links that propagate outside
buildings through the lower atmosphere. Wireless systems are being built
that provide data transmission between computers and other devices on
one’s own desk. These are part of the wireless world but not the part where,
except for interference perhaps, the atmosphere has any influence. The intent
of this book is to provide a description of the physical phenomena that can
affect propagation through the atmosphere, present sample measurements
and statistics, and provide models that system designers can use to calculate
their link budgets and estimate the limitations the atmosphere may place on
their design.
The book is written for those concerned with the design and performance of satellite
communications systems employed in fixed point-to-point, broadcasting, mobile, radio-
navigation,data-relay,computercommunications,andrelatedsatellite-basedapplications.The
recentrapidgrowthinsatellitecommunicationshascreatedaneedforaccurateinformationon
both satellite communications systems engineering and the impact of atmospheric effects on
satellite link design and system performance. This book addresses that need for the first time
in a single comprehensive source.
Telecommunications is today widely understood to mean the electrical means of
communicating over a distance. The first form of telecommunications was that of
the Telegraph, which was invented quite independently in 1837 by two scientists,
Wheatstone and Morse. Telegraphy was on a point-to-point unidirectional basis and
relied on trained operators to interpret between the spoken or written word and the
special signals sent over the telegraph wire. However, the use of telegraphy did
greatly enhance the operations of railways and, of course, the dissemination of news
and personal messages between towns.