matlab有限元網格劃分程序 DistMesh is a simple MATLAB code for generation of unstructured triangular and tetrahedral meshes. It was developed by Per-Olof Persson (now at UC Berkeley) and Gilbert Strang in the Department of Mathematics at MIT. A detailed description of the program is provided in our SIAM Review paper, see documentation below. One reason that the code is short and simple is that the geometries are specified by Signed Distance Functions. These give the shortest distance from any point in space to the boundary of the domain. The sign is negative inside the region and positive outside. A simple example is the unit circle in 2-D, which has the distance function d=r-1, where r is the distance from the origin. For more complicated geometries the distance function can be computed by interpolation between values on a grid, a common representation for level set methods. For the actual mesh generation, DistMesh uses the Delaunay triangulation routine in MATLAB and tries to optimize the node locations by a force-based smoothing procedure. The topology is regularly updated by Delaunay. The boundary points are only allowed to move tangentially to the boundary by projections using the distance function. This iterative procedure typically results in very well-shaped meshes. Our aim with this code is simplicity, so that everyone can understand the code and modify it according to their needs. The code is not entirely robust (that is, it might not terminate and return a well-shaped mesh), and it is relatively slow. However, our current research shows that these issues can be resolved in an optimized C++ code, and we believe our simple MATLAB code is important for demonstration of the underlying principles. To use the code, simply download it from below and run it from MATLAB. For a quick demonstration, type "meshdemo2d" or "meshdemond". For more details see the documentation.
標簽: matlab有限元網格劃分程序
上傳時間: 2015-08-12
上傳用戶:凜風拂衣袖
建立了一個用于求解sigma的核函數矩陣,全部的測試數據點為一行數據,This matrix should be positive definite if the kernel function
標簽: 核函數
上傳時間: 2016-04-01
上傳用戶:guokai626
This book was born from the perception that there is much more to spectrum use and sharing than one sees reflected in publications, whether academic, commercial or political. the former – in good research style – tend towards reductionism and concentrate on specific, detailed aspects. commercial publications tend to empha- size the positive aspects and they tend to put promise above practice. Given the ever increasing pace of technology development and recent successes of new wireless technologies, some pundits predict large-scale spectrum scarcity, potentially lead- ing to economic catastrophe. Although economic theory has a hard time explaining recent events that shook the world economy, the notion of spectrum scarcity is intui- tively acceptable, even if not correct or immediately relevant.
上傳時間: 2020-06-01
上傳用戶:shancjb
為適應雙向DC/DC功率變換的電流采樣需求,一種高精度高邊電流采樣電路被提出。其基本思想是在功率電路的高邊串入采樣電阻,借助電流鏡原理并引入偏置電流電路,將雙向電流均轉換為正向電壓輸出。通過理論分析與仿真結合的方法對電流鏡采樣原理及4種不同的偏置電流電路方案進行對比,最后通過實驗數據驗證了高精度高邊電流采樣電路的有效性。實驗數據表明,該采樣電路可在-25~75℃的溫度工作范圍內,針對-10~+10 A范圍內的電流采樣實現優于5%的采樣精度。Current sensing plays an important role in controlling,monitoring or protection functions of power systems.To meet the current sensing requirement of bidirectional DC/DC converters,a high-accuracy bidirectional current sensing circuit is proposed.The proposed current sensing circuit inserts a resistor in the path of the current to be sensed,while the current mirror and biased current circuit are introduced.Therefore,the bidirectional current can be expressed by positive voltage.By theoretical analysis and simulation,the sampling theory is analyzed and four biased current circuits are compared.At last,experimental results verified the proposed method.It is demonstrated that the proposed current sensing circuit can achi...
上傳時間: 2022-04-22
上傳用戶:
le flows through MOS channel while Ih flows across PNP transistor Ih= a/(1-a) le, IE-le+lh=1/(1-a)' le Since IGBT has a long base PNP, a is mainly determined by ar si0 2ar= 1/cosh(1/La), La: ambipolar diff length a-0.5 (typical value)p MOSFET channel current (saturation), le=U"Cox"W(2"Lch)"(Vc-Vth)le Thus, saturated collector current Ic, sat=1/(1-a)"le=-1/(1-a)"UCox"W/(2Lch)"(Vo-Vth)2Also, transconductance gm, gm= 1/(1-a)"u' Cox W/Lch*(Vo-Vth)Turn-On1. Inversion layer is formed when Vge>Vth2. Apply positive collector bias, +Vce3. Electrons flow from N+ emitter to N-drift layer providing the base current for the PNP transistor4. Since J1 is forward blased, hole carriers are injected from the collector (acts as an emitter).5. Injected hole carriers exceed the doping level of N-drift region (conductivity modulation). Turn-Off1. Remove gate bias (discharge gate)2. Cut off electron current (base current, le, of pnp transistor)
標簽: igbt
上傳時間: 2022-06-20
上傳用戶:wangshoupeng199