Applying power to a standard logic chip, SRAM, or EPROM, usually results in output pinstracking the applied voltage as it rises. programmable logic attempts to emulate that behavior,but physics forbids perfect emulation, due to the device programmability. It requires care tospecify the pin behavior, because programmable parts encounter unknown variables – yourdesign and your power environment.
The Virtex-4 features, such as the programmable IDELAY and built-in FIFO support, simplifythe bridging of a high-speed, PCI-X core to large amounts of DDR-SDRAM memory. Onechallenge is meeting the PCI-X target initial latency specification. PCI-X Protocol Addendum tothe PCI Local Bus Specification Revision 2.0a ([Ref 6]) dictates that when a target signals adata transfer, "the target must do so within 16 clocks of the assertion of FRAME#." PCItermination transactions, such as Split Response/Complete, are commonly used to meet thelatency specifications. This method adds complexity to the design, as well as additional systemlatency. Another solution is to increase the ratio of the memory frequency to the PCI-X busfrequency. However, this solution increases the required power and clock resource usage.
Xilinx Next Generation 28 nm FPGA Technology Overview
Xilinx has chosen 28 nm high-κ metal gate (HKMG) highperformance,low-power process technology and combined it with a new unified ASMBL™ architecture to create a new generation of FPGAs that offer lower power and higher performance. These devices enable unprecedented levels of integration and bandwidth and provide system architects and designers a fully programmable alternative to ASSPs and ASICs.
WP369可擴(kuò)展式處理平臺-各種嵌入式系統(tǒng)的理想解決方案 :Delivering unrivaled levels of system performance,flexibility, scalability, and integration to developers,Xilinx's architecture for a new Extensible Processing Platform is optimized for system power, cost, and size. Based on ARM's dual-core Cortex™-A9 MPCore processors and Xilinx’s 28 nm programmable logic,the Extensible Processing Platform takes a processor-centric approach by defining a comprehensive processor system implemented with standard design methods. This approach provides Software Developers a familiar programming environment within an optimized, full featured,powerful, yet low-cost, low-power processing platform.
The Xilinx Zynq-7000 Extensible Processing Platform (EPP) redefines the possibilities for embedded systems, giving system and software architects and developers a flexible platform to launch their new solutions and traditional ASIC and ASSP users an alternative that aligns with today’s programmable imperative. The new class of product elegantly combines an industrystandard ARMprocessor-based system with Xilinx 28nm programmable logic—in a single device. The processor boots first, prior to configuration of the programmable logic. This, along with a streamlined workflow, saves time and effort and lets software developers and hardware designers start development simultaneously.
Field programmable Gate Arrays (FPGAs) are becoming a critical part of every system design. Many vendors offer many different architectures and processes. Which one is right for your design? How do you design one of these so that it works correctly and functions as you expect in your entire system? These are the questions that this paper sets out to answer.
a8259 可編程中斷控制 altera提供
The a8259 is designed to simplify the implementation of the interrupt interface in 8088 and 8086 based microcomputer systems. The device is known as a programmable interrupt controller. The a8259 receives and prioritizes up to 8 interrupts, and in the cascade mode, this can be expanded up to 64 interrupts. An asynchronous reset and a clock input have been added to improve operation and reliability.
Abstract: As industrial control systems (ICSs) have become increasingly connected and use more off-the-shelfcomponents, new vulnerabilities to cyber attacks have emerged. This tutorial looks at three types of ICSs:programmable logic controllers (PLCs), supervisory control and data acquisition (SCADA) systems, anddistributed control systems (DCSs), and then discusses security issues and remedies. This document alsoexplains the benefits and limitations of two cryptographic solutions (digital signatures and encryption) andelaborates on the reasons for using security ICs in an ICS to support cryptography.