亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

provides

  • MAXQUSBJTAGOW評估板軟件

    MAXQUSBJTAGOW評估板軟件:關鍵特性 Easily Load and Debug Code Interface provides In-Application Debugging Features Step-by-Step Execution Tracing Breakpointing by Code Address, Data Memory Address, or Register Access Data Memory View and Edit Supports Logic Levels from 1.1V to 3.6V Supports JTAG and 1-Wire Protocols Each Adapter Has Its Own Unique Serial ID, Allowing Multiple Adapters to be Connected Without COM Port Conflicts Has In-Field Upgradable Capability if Firmware Needs to be Upgraded Enclosure Protects from Shorts and ESD

    標簽: MAXQUSBJTAGOW 評估板 軟件

    上傳時間: 2013-11-23

    上傳用戶:truth12

  • Xilinx UltraScale:新一代架構滿足您的新一代架構需求(EN)

      中文版詳情瀏覽:http://www.elecfans.com/emb/fpga/20130715324029.html   Xilinx UltraScale:The Next-Generation Architecture for Your Next-Generation Architecture    The Xilinx® UltraScale™ architecture delivers unprecedented levels of integration and capability with ASIC-class system- level performance for the most demanding applications.   The UltraScale architecture is the industr y's f irst application of leading-edge ASIC architectural enhancements in an All Programmable architecture that scales from 20 nm planar through 16 nm FinFET technologies and beyond, in addition to scaling from monolithic through 3D ICs. Through analytical co-optimization with the X ilinx V ivado® Design Suite, the UltraScale architecture provides massive routing capacity while intelligently resolving typical bottlenecks in ways never before possible. This design synergy achieves greater than 90% utilization with no performance degradation.   Some of the UltraScale architecture breakthroughs include:   • Strategic placement (virtually anywhere on the die) of ASIC-like system clocks, reducing clock skew by up to 50%    • Latency-producing pipelining is virtually unnecessary in systems with massively parallel bus architecture, increasing system speed and capability   • Potential timing-closure problems and interconnect bottlenecks are eliminated, even in systems requiring 90% or more resource utilization   • 3D IC integration makes it possible to build larger devices one process generation ahead of the current industr y standard    • Greatly increased system performance, including multi-gigabit serial transceivers, I/O, and memor y bandwidth is available within even smaller system power budgets   • Greatly enhanced DSP and packet handling   The Xilinx UltraScale architecture opens up whole new dimensions for designers of ultra-high-capacity solutions.

    標簽: UltraScale Xilinx 架構

    上傳時間: 2013-11-21

    上傳用戶:wxqman

  • 采用TüV認證的FPGA開發功能安全系統

    This white paper discusses how market trends, the need for increased productivity, and new legislation have accelerated the use of safety systems in industrial machinery. This TÜV-qualified FPGA design methodology is changing the paradigms of safety designs and will greatly reduce development effort, system complexity, and time to market. This allows FPGA users to design their own customized safety controllers and provides a significant competitive advantage over traditional microcontroller or ASIC-based designs. Introduction The basic motivation of deploying functional safety systems is to ensure safe operation as well as safe behavior in cases of failure. Examples of functional safety systems include train brakes, proximity sensors for hazardous areas around machines such as fast-moving robots, and distributed control systems in process automation equipment such as those used in petrochemical plants. The International Electrotechnical Commission’s standard, IEC 61508: “Functional safety of electrical/electronic/programmable electronic safety-related systems,” is understood as the standard for designing safety systems for electrical, electronic, and programmable electronic (E/E/PE) equipment. This standard was developed in the mid-1980s and has been revised several times to cover the technical advances in various industries. In addition, derivative standards have been developed for specific markets and applications that prescribe the particular requirements on functional safety systems in these industry applications. Example applications include process automation (IEC 61511), machine automation (IEC 62061), transportation (railway EN 50128), medical (IEC 62304), automotive (ISO 26262), power generation, distribution, and transportation. 圖Figure 1. Local Safety System

    標簽: FPGA 安全系統

    上傳時間: 2013-11-14

    上傳用戶:zoudejile

  • 面向Eclips的Nios II軟件構建工具手冊

    面向Eclips的Nios II軟件構建工具手冊 The Nios® II Software Build Tools (SBT) for Eclipse™ is a set of plugins based on the Eclipse™ framework and the Eclipse C/C++ development toolkit (CDT) plugins. The Nios II SBT for Eclipse provides a consistent development platform that works for all Nios II embedded processor systems. You can accomplish all Nios II software development tasks within Eclipse, including creating, editing, building, running, debugging, and profiling programs.

    標簽: Eclips Nios 軟件

    上傳時間: 2013-11-02

    上傳用戶:瓦力瓦力hong

  • Nios II軟件開發人員手冊中的緩存和緊耦合存儲器部分

            Nios II 軟件開發人員手冊中的緩存和緊耦合存儲器部分 Nios® II embedded processor cores can contain instruction and data caches. This chapter discusses cache-related issues that you need to consider to guarantee that your program executes correctly on the Nios II processor. Fortunately, most software based on the Nios II hardware abstraction layer (HAL) works correctly without any special accommodations for caches. However, some software must manage the cache directly. For code that needs direct control over the cache, the Nios II architecture provides facilities to perform the following actions:

    標簽: Nios 軟件開發 存儲器

    上傳時間: 2013-10-25

    上傳用戶:蟲蟲蟲蟲蟲蟲

  • Nios II定制指令用戶指南

         Nios II定制指令用戶指南:With the Altera Nios II embedded processor, you as the system designer can accelerate time-critical software algorithms by adding custom instructions to the Nios II processor instruction set. Using custom instructions, you can reduce a complex sequence of standard instructions to a single instruction implemented in hardware. You can use this feature for a variety of applications, for example, to optimize software inner loops for digital signal processing (DSP), packet header processing, and computation-intensive applications. The Nios II configuration wizard,part of the Quartus® II software’s SOPC Builder, provides a graphical user interface (GUI) used to add up to 256 custom instructions to the Nios II processor. The custom instruction logic connects directly to the Nios II arithmetic logic unit (ALU) as shown in Figure 1–1.

    標簽: Nios 定制 指令 用戶

    上傳時間: 2013-10-12

    上傳用戶:kang1923

  • XAPP503-針對Xilinx器件的SVF和XSVF文件格式

    This application note provides users with a general understanding of the SVF and XSVF fileformats as they apply to Xilinx devices. Some familiarity with IEEE STD 1149.1 (JTAG) isassumed. For information on using Serial Vector Format (SVF) and Xilinx Serial Vector Format(XSVF) files in embedded programming applications

    標簽: Xilinx XAPP XSVF 503

    上傳時間: 2015-01-02

    上傳用戶:時代將軍

  • XAPP452-Spartan-3高級配置架構

    This application note provides a detailed description of the Spartan™-3 configurationarchitecture. It explains the composition of the bitstream file and how this bitstream isinterpreted by the configuration logic to program the part. Additionally, a methodology ispresented that will guide the user through the readback process. This information can be usedfor partial reconfiguration or partial readback.

    標簽: Spartan XAPP 452 架構

    上傳時間: 2013-11-16

    上傳用戶:qingdou

  • XAPP122 - Spartan-XL FPGA的Express配置

    Express Mode uses an 8-bit wide bus path for fast configuration of Xilinx FPGAs. Thisapplication note provides information on how to perform Express configuration specifically forthe Spartan™-XL family. The Express mode signals and their associated timing are defined.The steps of Express configuration are described in detail, followed by detailed instructions thatshow how to implement the configuration circui

    標簽: Spartan-XL Express XAPP FPGA

    上傳時間: 2015-01-02

    上傳用戶:nanxia

  • xapp069 - 使用XC9500 JTAG邊界掃描接口

    This application note explains the XC9500™/XL/XV Boundary Scan interface anddemonstrates the software available for programming and testing XC9500/XL/XV CPLDs. Anappendix summarizes the iMPACT software operations and provides an overview of theadditional operations supported by XC9500/XL/XV CPLDs for in-system programming.

    標簽: xapp 9500 JTAG 069

    上傳時間: 2013-11-01

    上傳用戶:南國時代

主站蜘蛛池模板: 云南省| 城固县| 保定市| 江津市| 富宁县| 黔江区| 罗甸县| 沧州市| 嵊州市| 通州区| 广德县| 叶城县| 孝感市| 瓦房店市| 社旗县| 德兴市| 徐水县| 安徽省| 恩平市| 武穴市| 横山县| 巴彦淖尔市| 阿拉善左旗| 乃东县| 顺昌县| 保靖县| 濮阳市| 聂荣县| 资阳市| 新安县| 泰兴市| 贞丰县| 夏邑县| 大方县| 大庆市| 嵩明县| 原平市| 平潭县| 宾川县| 新宾| 闵行区|