This example provides a description of how to use a DMA channel to transfer a
word data buffer from memory (Flash) to memory (RAM).
The dedicated DMA channel is configured to transfer once a time a 32 word data buffer
stored as constant in the Flash memory to another buffer in the RAM memory.
The received data are stored in the DST_Buffer.
The DMA channel transfer complete interrupt is enabled to generate an interrupt at
the end of the buffer transfer. As soon as the transfer is completed an interrupt is
generated and in the DMA channel interrupt routine the transfer complete interrupt
pending bit is cleared.
The data counter is stored before and after the transfer to show that all data has been
transfered.
TransferStatus gives the data transfer status where it is PASSED if transmitted and
received data are the same otherwise it is FAILED
移動ip書籍,很有用。
Third Generation (3G) mobile offers access to broadband multimedia services - and in the future most of these, even voice and video, will be IP-based. However 3G networks are not based on IP technologies, rather they are an evolution from existing 2G networks. Much work needs to be done to IP QoS and mobility protocols and architectures for them to be able to provide the functionality 3G requires.
NAME: u2440mon.c
DESC: u2440mon entry point,menu,download
HISTORY:
Mar.25.2002:purnnamu: S3C2400X profile.c is ported for S3C2410X.
Mar.27.2002:purnnamu: DMA is enabled.
Apr.01.2002:purnnamu: isDownloadReady flag is added.
Apr.10.2002:purnnamu: - Selecting menu is available in the waiting loop.
So, isDownloadReady flag gets not needed
- UART ch.1 can be selected for the console.
Aug.20.2002:purnnamu: revision number change 0.2 -> R1.1
Sep.03.2002:purnnamu: To remove the power noise in the USB signal, the unused CLKOUT0,1 is disabled.
After the successful global introduction during the past decade of the second generation (2G) digital
mobile communications systems, it seems that the third generation (3G) Universal Mobile Communication
System (UMTS) has finally taken off, at least in some regions. The plethora of new services that
are expected to be offered by this system requires the development of new paradigms in the way scarce
radio resources should be managed. The Quality of Service (QoS) concept, which introduces in a natural
way the service differentiation and the possibility of adapting the resource consumption to the specific
service requirements, will open the door for the provision of advanced wireless services to the mass
market.