摘 要 瞬態(tài)仿真領(lǐng)域的許多工作需要獲得可視化數(shù)據(jù), 仿真電路不能將輸出參數(shù)繪制成圖形時(shí)研究工作將受到很大影響. 而權(quán)威電路仿真軟件PSpice 在這個(gè)方面不盡如人意. 本文提出了一種有效的解決辦法: 通過MATLAB 編程搭建一個(gè)PSpice 與MATLAB 的數(shù)據(jù)接口,使PSpice輸出數(shù)據(jù)文件可以導(dǎo)入到MATLAB中繪制圖形. 這令我們能夠很方便地獲得數(shù)據(jù)的規(guī)律以有效地分析仿真結(jié)果, 這項(xiàng)技術(shù)對(duì)于教學(xué)和工程實(shí)踐都有比較實(shí)際的幫助.關(guān)鍵詞: 瞬態(tài)仿真 仿真程序 PSpice MATLAB 可視化數(shù)據(jù)The Data Transfer from Pspice to MATLABWu hao Ning yuanzhong Liang yingAbstract Many works in the area of transient simulation has shown how a emulator such asPSpice can be interfaced to an control analysis package such as MATLAB to get viewdata. Thepaper describes how such interfaces can be made using the MATLAB programming. The platformas a typical platform will solve the problem that PSpice software sometimes can not draw the datato a picture. It can make us find the rule from numerous data very expediently, so we can analyzethe outcome of the simulation. And it also can be used in the field of education.Keywords Transient Simulation Emulator PSpice MATLAB Viewdata1 引言科學(xué)研究和工程應(yīng)用常需要進(jìn)行電路仿真 PSpice可進(jìn)行直流 交流 瞬態(tài)等基本電路特性分析 也可進(jìn)行蒙托卡諾 MC 統(tǒng)計(jì)分析 最壞情況 Wcase 分析 優(yōu)化設(shè)計(jì)等復(fù)雜電路特性分析 它是國(guó)際上仿真電路的權(quán)威軟件 而MATLAB的主要特點(diǎn)有 高效方便的矩陣和數(shù)組運(yùn)算 編程效率高 結(jié)構(gòu)化面向?qū)ο?方便的繪圖功能 用戶使用方便 工具箱功能強(qiáng)大 兩者各有著重點(diǎn) 兩種軟件結(jié)合應(yīng)用 對(duì)研究工作有很重要的意義香港理工大學(xué)Y. S. LEE 等人首先將PSpice和MATLAB結(jié)合 開發(fā)了電力電子電路優(yōu)化用的CAD 程序MATSPICE[6] 將兩者相結(jié)合的關(guān)鍵在于 如何用MATLAB 獲取PSpice的仿真數(shù)據(jù) 對(duì)此參考文獻(xiàn) 6 里沒有詳細(xì)敘述 本文著重說明用MATLAB 讀取PSpice仿真數(shù)據(jù)的具體方法本論文利用MATLAB對(duì)PSpice仿真出的數(shù)據(jù)處理繪制出后者無法得到或是效果不好的仿真圖形 下面就兩者結(jié)合使用的例子 進(jìn)行具體說明
Modern electronic systems solve so many difficult problems that they often seem like magic. Nonetheless, these systems all have thesame basic limitation: they need a source of electrical power! Most of the time this is a straightforward challenge for the electronicdesigner, because there are many power-delivery solutions. Yet sometimes a device has no direct power source, and running wiresor replacing batteries is impractical. Even when long-life batteries are usable, they eventually need to be replaced, which requires aservice call.
Libsvm is a simple, easy-to-use, and efficient software for SVM
classification and regression. It can solve C-SVM classification,
nu-SVM classification, one-class-SVM, epsilon-SVM regression, and
nu-SVM regression. It also provides an automatic model selection
tool for C-SVM classification. This document explains the use of
libsvm.
This model is just testing an idea of MIMO, which IEEE802.11n
will have. But I havo not seen the standard, I tried to make
it with 11a. Actually this model would not work in real world,
because the preambles were not designed to solve the MIMO feature.
But this model may be useful to get some idea to start to
design a PHY with MIMO.
This folder contains all the codes based on Matlab Language for the book <《Iterative Methods for Linear and Nonlinear Equations》, and there are totally 21 M files, which can solve most of linear and nonlinear equations problems.
Chessboard Cover,On a chessboard,only one square is different, called specific.Use the Divide-and-Conquer methods to solve the Chessboard Cover Problem.
With the release of PHP 5 web developers need a guide to developing with PHP 5 to both learn its complex new features and more fully implement the long-standing features on which PHP s success is built. PHP 5 in Practice is a reference guide that provides developers with easy-to-use and easily extensible code to solve common PHP problems. It focuses on providing real code solutions to problems, allowing the reader to learn by seeing exactly what is happening behind the scenes to get your solution. Because a real-life situation will rarely match the book s example problems precisely, PHP 5 in Practice explains the solution well enough that you will understand it and can learn how to truly solve your own problem.
This paper presents an interactive technique that
produces static hairstyles by generating individual hair strands
of the desired shape and color, subject to the presence of gravity
and collisions. A variety of hairstyles can be generated by
adjusting the wisp parameters, while the deformation is solved
efficiently, accounting for the effects of gravity and collisions.
Wisps are generated employing statistical approaches. As for
hair deformation, we propose a method which is based on
physical simulation concepts but is simplified to efficiently
solve the static shape of hair. On top of the statistical wisp
model and the deformation solver, a constraint-based styler
is proposed to model artificial features that oppose the natural
flow of hair under gravity and hair elasticity, such as a hairpin.
Our technique spans a wider range of human hairstyles than
previously proposed methods, and the styles generated by this
technique are fairly realistic.
This my phd thesis for the WDM optical network optimization, which employs convex optimization techniques to solve the proposed integer problems. The computation complexity of my optimization framework is very low compared with other existing method and a performance bound is provided at the same time.