Lithium–sulfur (Li–S) batteries with high energy density and long cycle life are considered to be one of the most promising next-generation energy-storage systems beyond routine lithium-ion batteries. Various approaches have been proposed to break down technical barriers in Li–S battery systems. The use
of nanostructured metal oxides and sulfides for high sulfur utilization and long life span of Li–S batteries is reviewed here. The relationships between the intrinsic properties of metal oxide/sulfide hosts and electrochemical performances of Li–S batteries are discussed. Nanostructured metal oxides/ sulfides hosts used in solid sulfur cathodes, separators/interlayers, lithium- metal-anode protection, and lithium polysulfides batteries are discussed respectively. Prospects for the future developments of Li–S batteries with nanostructured metal oxides/sulfides are also discussed.
貼片鋁電解電容封裝庫
SMD Aluminum Electrolytic Capacitors VE
Features
? 3 ~ 16φ, 85℃, 2,000 hours assured
? Chip type large capacitance capacitors
? Designed for surface mounting on high density PC board.
? RoHS Compliance
Introduction
jSMPP is a java implementation (SMPP API) of the SMPP protocol (currently supports SMPP v3.4). It provides interfaces to communicate with a Message Center or an ESME (External Short Message Entity) and is able to handle traffic of 3000-5000 messages per second.
jSMPP is not a high-level library. People looking for a quick way to get started with SMPP may be better of using an abstraction layer such as the Apache Camel SMPP component: http://camel.apache.org/smpp.html
Travis-CI status:
History
The project started on Google Code: http://code.google.com/p/jsmpp/
It was maintained by uudashr on Github until 2013.
It is now a community project maintained at http://jsmpp.org
Release procedure
mvn deploy -DperformRelease=true -Durl=https://oss.sonatype.org/service/local/staging/deploy/maven2/ -DrepositoryId=sonatype-nexus-staging -Dgpg.passphrase=<yourpassphrase>
log in here: https://oss.sonatype.org
click the 'Staging Repositories' link
select the repository and click close
select the repository and click release
License
Copyright (C) 2007-2013, Nuruddin Ashr uudashr@gmail.com Copyright (C) 2012-2013, Denis Kostousov denis.kostousov@gmail.com Copyright (C) 2014, Daniel Pocock http://danielpocock.com Copyright (C) 2016, Pim Moerenhout pim.moerenhout@gmail.com
This project is licensed under the Apache Software License 2.0.
The SP2526A device is a dual +3.0V to +5.5V USB Supervisory Power Control Switch ideal
for self-powered and bus-powered Universal Serial Bus (USB) applications. Each switch has
low on-resistance (110mΩ typical) and can supply 500mA minimum. The fault currents are
limited to 1.0A typical and the flag output pin for each switch is available to indicate fault
conditions to the USB controller. The thermal shutdown feature will prevent damage to the
device when subjected to excessive current loads. The undervoltage lockout feature will
ensure that the device will remain off unless there is a valid input voltage present.
The BTS5016SDA is a one channel high-side power switch in PG-TO252-5-11 package providing embedded
protective functions.
The power transistor is built by a N-channel vertical power MOSFET with charge pump. The design is based on
Smart SIPMOS chip on chip technology.
The BTS5016SDA has a current controlled input and offers a diagnostic feedback with load current sense and a
defined fault signal in case of overload operation, overtemperature shutdown and/or short circuit shutdown.
AEC-Q100 qualified
? 12 V and 24 V battery systems compliance
? 3.3 V and 5 V logic compatible I/O
? 8-channel configurable MOSFET pre-driver
– High-side (N-channel and P-channel MOS)
– Low-side (N-channel MOS)
– H-bridge (up to 2 H-bridge)
– Peak & Hold (2 loads)
? Operating battery supply voltage 3.8 V to 36 V
? Operating VDD supply voltage 4.5 V to 5.5 V
? All device pins, except the ground pins, withstand at least 40 V
? Programmable gate charge/discharge currents for improving EMI behavior