function [U,center,result,w,obj_fcn]= fenlei(data)
[data_n,in_n] = size(data)
m= 2 % Exponent for U
max_iter = 100 % Max. iteration
min_impro =1e-5 % Min. improvement
c=3
[center, U, obj_fcn] = fcm(data, c)
for i=1:max_iter
if F(U)>0.98
break
else
w_new=eye(in_n,in_n)
center1=sum(center)/c
a=center1(1)./center1
deta=center-center1(ones(c,1),:)
w=sqrt(sum(deta.^2)).*a
for j=1:in_n
w_new(j,j)=w(j)
end
data1=data*w_new
[center, U, obj_fcn] = fcm(data1, c)
center=center./w(ones(c,1),:)
obj_fcn=obj_fcn/sum(w.^2)
end
end
display(i)
result=zeros(1,data_n) U_=max(U)
for i=1:data_n
for j=1:c
if U(j,i)==U_(i)
result(i)=j continue
end
end
end
標(biāo)簽:
data
function
Exponent
obj_fcn
上傳時(shí)間:
2013-12-18
上傳用戶:ynzfm
# include<stdio.h>
# include<math.h>
# define N 3
main(){
float NF2(float *x,float *y);
float A[N][N]={{10,-1,-2},{-1,10,-2},{-1,-1,5}};
float b[N]={7.2,8.3,4.2},sum=0;
float x[N]= {0,0,0},y[N]={0},x0[N]={};
int i,j,n=0;
for(i=0;i<N;i++)
{
x[i]=x0[i];
}
for(n=0;;n++){
//計(jì)算下一個(gè)值
for(i=0;i<N;i++){
sum=0;
for(j=0;j<N;j++){
if(j!=i){
sum=sum+A[i][j]*x[j];
}
}
y[i]=(1/A[i][i])*(b[i]-sum);
//sum=0;
}
//判斷誤差大小
if(NF2(x,y)>0.01){
for(i=0;i<N;i++){
x[i]=y[i];
}
}
else
break;
}
printf("經(jīng)過%d次雅可比迭代解出方程組的解:\n",n+1);
for(i=0;i<N;i++){
printf("%f ",y[i]);
}
}
//求兩個(gè)向量差的二范數(shù)函數(shù)
float NF2(float *x,float *y){
int i;
float z,sum1=0;
for(i=0;i<N;i++){
sum1=sum1+pow(y[i]-x[i],2);
}
z=sqrt(sum1);
return z;
}
標(biāo)簽:
C語言
編寫
迭代
上傳時(shí)間:
2019-10-13
上傳用戶:大萌萌撒