亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

systems-Keyword

  • lpc2292/lpc2294 pdf datasheet

    The LPC2292/2294 microcontrollers are based on a 16/32-bit ARM7TDMI-S CPU with real-time emulation and embedded trace support, together with 256 kB of embedded high-speed flash memory. A 128-bit wide memory interface and a unique accelerator architecture enable 32-bit code execution at the maximum clock rate. For critical code size applications, the alternative 16-bit Thumb mode reduces code by more than 30 pct with minimal performance penalty. With their 144-pin package, low power consumption, various 32-bit timers, 8-channel 10-bit ADC, 2/4 (LPC2294) advanced CAN channels, PWM channels and up to nine external interrupt pins these microcontrollers are particularly suitable for automotive and industrial control applications as well as medical systems and fault-tolerant maintenance buses. The number of available fast GPIOs ranges from 76 (with external memory) through 112 (single-chip). With a wide range of additional serial communications interfaces, they are also suited for communication gateways and protocol converters as well as many other general-purpose applications. Remark: Throughout the data sheet, the term LPC2292/2294 will apply to devices with and without the /00 or /01 suffix. The suffixes /00 and /01 will be used to differentiate from other devices only when necessary.

    標簽: lpc datasheet 2292 2294

    上傳時間: 2014-12-30

    上傳用戶:aysyzxzm

  • 無線電設(shè)計入門資料

    Abstract: The process of designing a radio system can be complex and often involves many project tradeoffs. Witha little insight, balancing these various characteristics can make the job of designing a radio system easier. Thistutorial explores these tradeoffs and provides details to consider for various radio applications. With a focus on theindustrial, scientific, medical (ISM) bands, the subjects of frequency selection, one-way versus two-way systems,modulation techniques, cost, antenna options, power-supply influences, effects on range, and protocol selectionare explored.

    標簽: 無線

    上傳時間: 2013-12-13

    上傳用戶:eastgan

  • 無線和RF解決方案

    Linear Technology offers some of the highest performance RF and signal chain solutions for wireless and cellularinfrastructure. These products support worldwide standards including, LTE, WiMAX, GSM,W-CDMA, TD-SCDMA,CDMA, and CDMA2000. Other wireless systems include broadband microwave data links, secure communications,satellite receivers, broadband wireless access, wireless broadcast systems, RFID readers and cable infrastructure

    標簽: 無線 方案

    上傳時間: 2013-11-04

    上傳用戶:kiklkook

  • 無線電干擾 Radio Susceptibility

      Abstract: Engineers often wish that radio susceptibility (RS) or radio immunity could be cured with an antibiotic, a vaccine, or someform of cure-all. Unfortunately, solving the RS problem is not that easy. Indeed, the laws of physics apply. In this article we discusssources of RS. We also offer tips and hints to protect systems, power supplies, printed circuit boards (PCBs), and electroniccomponents from radio frequency interference.

    標簽: Susceptibility Radio 無線電干擾

    上傳時間: 2014-12-30

    上傳用戶:旗魚旗魚

  • 快速跳頻通信系統(tǒng)同步技術(shù)研究

    同步技術(shù)是跳頻通信系統(tǒng)的關(guān)鍵技術(shù)之一,尤其是在快速跳頻通信系統(tǒng)中,常規(guī)跳頻通信通過同步字頭攜帶相關(guān)碼的方法來實現(xiàn)同步,但對于快跳頻來說,由于是一跳或者多跳傳輸一個調(diào)制符號,難以攜帶相關(guān)碼。對此引入雙跳頻圖案方法,提出了一種適用于快速跳頻通信系統(tǒng)的同步方案。采用短碼攜帶同步信息,克服了快速跳頻難以攜帶相關(guān)碼的困難。分析了同步性能,仿真結(jié)果表明該方案同步時間短、虛警概率低、捕獲概率高,同步性能可靠。 Abstract:  Synchronization is one of the key techniques to frequency-hopping communication system, especially in the fast frequency hopping communication system. In conventional frequency hopping communication systems, synchronization can be achieved by synchronization-head which can be used to carry the synchronization information, but for the fast frequency hopping, Because modulation symbol is transmitted by per hop or multi-hop, it is difficult to carry the correlation code. For the limitation of fast frequency hopping in carrying correlation code, a fast frequency-hopping synchronization scheme with two hopping patterns is proposed. The synchronization information is carried by short code, which overcomes the difficulty of correlation code transmission in fast frequency-hopping. The performance of the scheme is analyzed, and simulation results show that the scheme has the advantages of shorter synchronization time, lower probability of false alarm, higher probability of capture and more reliable of synchronization.

    標簽: 快速跳頻 同步技術(shù) 通信系統(tǒng)

    上傳時間: 2013-11-23

    上傳用戶:mpquest

  • 差分電路中單端及混合模式S-參數(shù)的使用

    Single-Ended and Differential S-Parameters Differential circuits have been important incommunication systems for many years. In the past,differential communication circuits operated at lowfrequencies, where they could be designed andanalyzed using lumped-element models andtechniques. With the frequency of operationincreasing beyond 1GHz, and above 1Gbps fordigital communications, this lumped-elementapproach is no longer valid, because the physicalsize of the circuit approaches the size of awavelength.Distributed models and analysis techniques are nowused instead of lumped-element techniques.Scattering parameters, or S-parameters, have beendeveloped for this purpose [1]. These S-parametersare defined for single-ended networks. S-parameterscan be used to describe differential networks, but astrict definition was not developed until Bockelmanand others addressed this issue [2]. Bockelman’swork also included a study on how to adapt single-ended S-parameters for use with differential circuits[2]. This adaptation, called “mixed-mode S-parameters,” addresses differential and common-mode operation, as well as the conversion betweenthe two modes of operation.This application note will explain the use of single-ended and mixed-mode S-parameters, and the basicconcepts of microwave measurement calibration.

    標簽: 差分電路 單端 模式

    上傳時間: 2014-03-25

    上傳用戶:yyyyyyyyyy

  • S參數(shù)的設(shè)計與應(yīng)用

    Agilent AN 154 S-Parameter Design Application Note S參數(shù)的設(shè)計與應(yīng)用 The need for new high-frequency, solid-state circuitdesign techniques has been recognized both by microwaveengineers and circuit designers. These engineersare being asked to design solid state circuitsthat will operate at higher and higher frequencies.The development of microwave transistors andAgilent Technologies’ network analysis instrumentationsystems that permit complete network characterizationin the microwave frequency rangehave greatly assisted these engineers in their work.The Agilent Microwave Division’s lab staff hasdeveloped a high frequency circuit design seminarto assist their counterparts in R&D labs throughoutthe world. This seminar has been presentedin a number of locations in the United States andEurope.From the experience gained in presenting this originalseminar, we have developed a four-part videotape, S-Parameter Design Seminar. While the technologyof high frequency circuit design is everchanging, the concepts upon which this technologyhas been built are relatively invariant.The content of the S-Parameter Design Seminar isas follows:

    標簽: S參數(shù)

    上傳時間: 2013-12-19

    上傳用戶:aa54

  • Cadence PSD 15.0版本功能介紹

    隨著PCB設(shè)計復(fù)雜程度的不斷提高,設(shè)計工程師對 EDA工具在交互性和處理復(fù)雜層次化設(shè)計功能的要求也越來越高。Cadence Design Systems, Inc. 作為世界第一的EDA工具供應(yīng)商,在這些方面一直為用戶提供業(yè)界領(lǐng)先的解決方案。在 Concept-HDL15.0中,這些功能又得到了大度地提升。首先,Concept-HDL15.0,提供了交互式全局屬性修改刪除,以及全局器件替換的圖形化工作界面。在這些全新的工作環(huán)境中,用戶可以在圖紙,設(shè)計,工程不同的級別上對器件,以及器件/線網(wǎng)的屬性進行全局性的編輯。

    標簽: Cadence 15.0 PSD 版本

    上傳時間: 2013-11-19

    上傳用戶:38553903210

  • Cadence英文教程

    Trademarks and service marks of Cadence Design Systems, Inc. (Cadence) contained in this document are attributed to Cadence with the appropriate symbol.

    標簽: Cadence 英文 教程

    上傳時間: 2014-12-31

    上傳用戶:hustfanenze

  • Allegro-Design-Editor-Tutorial_ade_tut

    Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. (Cadence) contained in

    標簽: Allegro-Design-Editor-Tutorial_ad e_tut

    上傳時間: 2013-11-11

    上傳用戶:yulg

主站蜘蛛池模板: 清镇市| 颍上县| 衡阳市| 方正县| 伊金霍洛旗| 保康县| 海门市| 威宁| 苍山县| 青岛市| 兴隆县| 太仓市| 北碚区| 吉木乃县| 右玉县| 留坝县| 肥城市| 雷州市| 榆树市| 基隆市| 张家港市| 昌都县| 阿拉善盟| 北辰区| 固安县| 阿城市| 余姚市| 竹溪县| 特克斯县| 乌兰浩特市| 理塘县| 仲巴县| 衡山县| 元朗区| 扶沟县| 临泽县| 四会市| 冀州市| 班玛县| 宝丰县| 昌吉市|